Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

Analysis of Swirl in Unsteady Flow and its Effect on Diesel Combustion

1992-09-01
921643
The paper first describes three linked computational models which allow the estimation of: swirl generated during the induction process; the modification of swirl with bowl-in-piston combustion chambers during compression as the piston approaches top dead centre; the interaction of the fuel sprays with swirl including relative crosswind velocities between the air and the fuel sprays and spray impingement velocities. The paper then presents experimental results from a single-cylinder direct injection diesel engine, during which both the fuel spray and swirl parameters were changed systematically. Finally, the predicted spray impingement and crosswind velocities for this engine are correlated with the engine performance obtained experimentally, in particular, with fuel economy and smoke emission.
Technical Paper

Burn Rate and Instantaneous Heat Flux Study of Iso-octane, Toluene and Gasoline in a Spray-Guided Direct-Injection Spark-Ignition Engine

2008-04-14
2008-01-0469
The burn rate and the instantaneous in-cylinder heat transfer have been studied experimentally in a spray-guided direct-injection spark-ignition engine with three different fuels: gasoline, iso-octane and toluene. The effects of the ignition timing, air fuel ratio, fuel injection timing and injection strategy (direct injection or port injection) on the burn rate and the in-cylinder heat transfer have been experimentally investigated at a standard mapping point (1500 rpm and 0.521 bar MAP) with the three different fuels. The burn rate analysis was deduced from the in-cylinder pressure measurement. A two-dimensional heat conduction model of the thermocouple was used to calculate the heat flux from the measured surface temperature. An engine thermodynamic simulation code was used to predict the gas-to-wall heat transfer.
Technical Paper

Cold Start Particulate Emissions from a Second Generation DI Gasoline Engine

2007-07-23
2007-01-1931
Spray guided Direct Injection Gasoline Engines are a key enabler to reducing CO2 emissions and improving the fuel economy of light duty vehicles. Particulate emissions from these engines have been shown to be lower than from first generation direct injection gasoline engines, but they may still be significantly higher than port fuel injected engines due to the reduced time available for mixture preparation and increased incidence of fuel impingement on the piston crown and combustion chamber surfaces. These factors are particularly severe in the period following a cold start. Both nuclei and accumulation mode particle size and number concentration were measured using a Cambustion differential mobility spectrometer. These data are reported for different coolant temperature intervals during the warm-up period. The bulk composition was determined using thermo-gravimetric analysis, and PM mass fractions are given for different volatility ranges and for elemental carbon.
Journal Article

Cycle-to-Cycle Variation Analysis of Two-Colour PLIF Temperature Measurements Calibrated with Laser Induced Grating Spectroscopy in a Firing GDI Engine

2019-04-02
2019-01-0722
In-cylinder temperatures and their cyclic variations strongly influence many aspects of internal combustion engine operation, from chemical reaction rates determining the production of NOx and particulate matter to the tendency for auto-ignition leading to knock in spark ignition engines. Spatially resolved measurements of temperature can provide insights into such processes and enable validation of Computational Fluid Dynamics simulations used to model engine performance and guide engine design. This work uses a combination of Two-Colour Planar Laser Induced Fluorescence (TC-PLIF) and Laser Induced Grating Spectroscopy (LIGS) to measure the in-cylinder temperature distributions of a firing optically accessible spark ignition engine. TC-PLIF performs 2-D temperature measurements using fluorescence emission in two different wavelength bands but requires calibration under conditions of known temperature, pressure and composition.
Journal Article

Investigation of Combustion Robustness in Catalyst Heating Operation on a Spray Guided DISI Engine, Part II - Measurements of Spray Development, Combustion Imaging and Emissions

2010-04-12
2010-01-0603
In-cylinder spray imaging by Mie scattering has been taken with frame rates up to 27,000 fps, along with high speed video photography of chemiluminescence and soot thermal radiation. Spectroscopic measurements have confirmed the presence of OH*, CH* and C2* emissions lines, and their magnitude relative compared to soot radiation. Filtering for CH* has been used with both the high speed video and a Photo-Multiplier Tube (PMT). The PMT signals have been found to correlate with the rate of heat release derived from in-cylinder pressure measurements. A high power photographic strobe has been used to illuminate the fuel spray. Images show that the fuel spray can strike the ground strap of the spark plug, break up, and a fuel cloud then drifts over and under the strap through the spark plug gap. Tests have conducted at two different spark plug orientations using a single spark strategy.
Technical Paper

Multi-Component Quantitative PLIF: Robust Engineering Measurements of Cyclic Variation in a Firing Spray-Guided Gasoline Direct Injection Engine

2008-04-14
2008-01-1073
Planar Laser-Induced Fluorescence has been widely accepted and applied to measurements of fuel concentration distributions in IC engines. The need for such measurements has increased with the introduction of Direct Injection (DI) gasoline engines, where it is critical to understand the influence of mixture inhomogeneity on ignition and subsequent combustion, and in particular the implications for cyclic variability. The apparent simplicity of PLIF has led to misunderstanding of the technique when applied to quantitative measurements of fuel distributions. This paper presents a series of engineering methods for optimizing, calibrating and referencing, which together demonstrate a quantitative measure of fuel concentration with an absolute accuracy of 10%. PLIF is widely used with single component fuels as carriers for the fluorescent tracers.
Journal Article

Multi-Plane PIV Measurements in a Gasoline Direct Injection Engine

2020-09-15
2020-01-2049
The flows in-cylinder have a profound effect on the mixture preparation and subsequent combustion in all engines. These flows are highly three-dimensional in nature and information from multiple planes is required to characterise the flow dynamics. The flow measurements reported here are from three orthogonal planes in an optical access engine that is based on the Jaguar Land Rover AJ200 Gasoline Direct Injection (GDI) engine. Particle Image Velocimetry (PIV) measurements have been taken every 5°CA from the start of induction to the end of compression. Data have been obtained from 300 cycles for separate experiments measuring flows in the tumble plane, the swirl plane and the cross-tumble plane. Vector comparison metrics are used to quantitatively compare ensemble averaged PIV flow fields to Computational Fluid Dynamics (CFD) simulations across each plane in terms of both the velocity magnitude and direction.
Technical Paper

Optical Techniques that can be Applied to Investigate GDI Engine Combustion

2017-09-04
2017-24-0046
The increased efficiency and specific output with Gasoline Direct Injection (GDI) engines are well known, but so too are the higher levels of Particulate Matter emissions compared with Port Fuel Injection (PFI) engines. To minimise Particulate Matter emissions, then it is necessary to understand and control the mixture preparation process, and important insights into GDI engine mixture preparation and combustion can be obtained from optical access engines. Such data is also crucial for validating models that predict flows, sprays and air fuel ratio distributions. The purpose of this paper is to review a number of optical techniques; the interpretation of the results is engine specific so will not be covered here. Mie scattering can be used for semi-quantitative measurements of the fuel spray and this can be followed with Planar Laser Induced Fluorescence (PLIF) for determining the air fuel ratio and temperature distributions.
Technical Paper

Particle Number Emissions from a Range of European Vehicles

2010-04-12
2010-01-0786
In light of forthcoming particle number legislation for light-duty passenger vehicles, time-resolved Particle Mass (PM) and Particle Number (PN) emissions over the New European Drive Cycle (NEDC) are reported for four current vehicle technologies; modern diesel, with and without a Diesel Particulate Filter (DPF), Direct Injection Spark Ignition (DISI) gasoline and multi-point Port Fuel Injection (PFI) gasoline. The PN and PM emissions were ordered (highest to lowest) according to: Non-DPF diesel ≻ DISI ≻ PFI ~ DPF diesel. Both the non-DPF diesel and DISI vehicles emitted PN and PM continuously over the NEDC. This is in contrast with both the DPF diesel and PFI vehicles which emitted nearly all their PN and PM during the first 200 seconds. The PFI result is thought to be a consequence of cold-start mixture preparation whilst several possible explanations are offered for the DPF diesel trend.
Technical Paper

Particulate Matter and Hydrocarbon Emissions Measurements: Comparing First and Second Generation DISI with PFI in Single Cylinder Optical Engines

2006-04-03
2006-01-1263
A Spray Guided Direct Injection (SGDI) engine has been shown to emit less Particulate Matter (PM) than a first generation (wall guided) Direct Injection Spark Ignition (DISI) engine. The reduction is attributed to the reduced incidence of fuel-wall impingement and higher fuel injection pressure. The extent to which this is true was investigated by comparison between single cylinder SGDI and DISI engines. Both engines were also operated with conventional port injection to provide a baseline. Feedgas PM number concentration and size spectra were measured using a Cambustion differential mobility spectrometer for the fuels iso-octane and toluene with a range of Air-Fuel Ratios (AFRs), ignition and injection timings.
Technical Paper

Reduction of CO2 Emissions through Lubricant Thermal Management During the Warm Up of Passenger Car Engines

2016-04-05
2016-01-0892
Most major regional automotive markets have stringent legislative targets for vehicle greenhouse gas emissions or fuel economy enforced by fiscal penalties. Large improvements in vehicle efficiency on mandated test cycles have already taken place in some markets through the widespread adoption of technologies such as downsizing or dieselisation. There is now increased focus on approaches which give smaller, but significant incremental efficiency benefits, such as reducing parasitic losses due to engine friction. The reduction in tail pipe CO2 emissions through the reduction of engine friction using lubricants has been reported by many authors. However, opportunities also exist to reduce the lubricant viscosity during warm up by the thermal management of the lubricant mass.
Technical Paper

Spray Behaviour and Particulate Matter Emissions with M15 Methanol/Gasoline Blends in a GDI Engine

2016-04-05
2016-01-0991
Model M15 gasoline fuels have been created from pure fuel components, to give independent control of volatility, the heavy end content and the aromatic content, in order to understand the effect of the fuel properties on Gasoline Direct Injection (GDI) fuel spray behaviour and the subsequent particulate number emissions. Each fuel was imaged at a range of fuel temperatures in a spray rig and in a motored optical engine, to cover the full range from non-flashing sprays through to flare flashing sprays. The spray axial penetration (and potential piston and liner impingement), and spray evaporation rate were extracted from the images. Firing engine tests with the fuels with the same fuel temperatures were performed and exhaust particulate number spectra captured using a DMS500 Mark II Particle Spectrometer.
Technical Paper

The Effect of Non-Ideal Vapour-Liquid Equilibrium and Non-Ideal Liquid Diffusion on Multi-Component Droplet Evaporation for Gasoline Direct Injection Engines

2015-04-14
2015-01-0924
A model for the evaporation of a multi-component fuel droplet is presented that takes account of temperature dependent fuel and vapour properties, evolving droplet internal temperature distribution and composition, and enhancement to heat and mass transfer due to droplet motion. The effect on the internal droplet mixing of non-ideal fluid diffusion is accounted for. Activity coefficients for vapour-liquid equilibrium and diffusion coefficients are determined using the UNIFAC method. Both well-mixed droplet evaporation (assuming infinite liquid mass diffusivity) and liquid diffusion-controlled droplet evaporation (iteratively solving the multi-component diffusion equation) have been considered. Well-mixed droplet evaporation may be applicable with slow evaporation, for example early gasoline direct injection; diffusion-controlled droplet evaporation must be considered when faster evaporation is encountered, for example when injection is later, or when the fuel mixture is non-ideal.
Technical Paper

The Influence of Fuel Properties on Particulate Number Emissions from a Direct Injection Spark Ignition Engine

2013-04-08
2013-01-1558
The use of direct injection spark ignition (DISI) engines for passenger cars has increased; providing greater specific performance and lower CO₂ emissions. DISI engines, however, produce more particulate matter (PM) emissions than Port-Fuel-Injected (PFI) engines. Forthcoming European exhaust emissions legislation is addressing concerns over health effects of PM emissions. Accordingly, research into PM emission formation has increased. A model developed by Aikawa et al., (2010) for PFI engines correlated PM number emissions with the vapor pressure and the double bond equivalent (DBE) of the components of the fuel. However there was no independent control of these parameters. This study investigates a particulate emissions index for DISI engines.
Technical Paper

Tribological Behavior of Low Viscosity Lubricants in the Piston to Bore Zone of a Modern Spark Ignition Engine

2014-10-13
2014-01-2859
Most major regional automotive markets have stringent legislative targets for vehicle greenhouse gas emissions or fuel economy enforced by fiscal penalties. Large improvements in vehicle efficiency on mandated test cycles have already taken place in some markets through the widespread adoption of technologies such as downsizing or dieselization. There is now increased focus on approaches which give smaller but significant incremental efficiency benefits such as reducing parasitic losses due to engine friction. Fuel economy improvements which achieve this through the development of advanced engine lubricants are very attractive to vehicle manufacturers due to their favorable cost-benefit ratio. For an engine with components which operate predominantly in the hydrodynamic lubrication regime, the most significant lubricant parameter which can be changed to improve the tribological performance of the system is the lubricant viscosity.
X