Refine Your Search

Topic

Search Results

Viewing 1 to 9 of 9
Journal Article

An Experimental Methodology for Measuring of Aerodynamic Resistances of Heavy Duty Vehicles in the Framework of European CO2 Emissions Monitoring Scheme

2014-04-01
2014-01-0595
Due to the diversity of Heavy Duty Vehicles (HDV), the European CO2 and fuel consumption monitoring methodology for HDVs will be based on a combination of component testing and vehicle simulation. In this context, one of the key input parameters that need to be accurately defined for achieving a representative and accurate fuel consumption simulation is the vehicle's aerodynamic drag. A highly repeatable, accurate and sensitive measurement methodology was needed, in order to capture small differences in the aerodynamic characteristics of different vehicle bodies. A measurement methodology is proposed which is based on constant speed measurements on a test track, the use of torque measurement systems and wind speed measurement. In order to support the development and evaluation of the proposed approach, a series of experiments were conducted on 2 different trucks, a Daimler 40 ton truck with a semi-trailer and a DAF 18 ton rigid truck.
Technical Paper

Application and Validation of CAE Methods for Comprehensive Durability Assessment of Leaf Springs with Measurement and Testing

2015-09-29
2015-01-2756
Securing the desired strength and durability characteristics of suspension components is one of the most important topics in the development of commercial vehicles because these components undergo multiaxial variable amplitude loading. Leaf springs are essential for the suspension systems of trucks and they are considered as security relevant components in the product development phase. In order to guide the engineers in the design and testing department, a simulation method is developed as explained by Bakir et al. in a recently published SAE paper [1]. The main aim of the present study is to illustrate the validation of this simulation method for the durability of leaf springs based on the results from testing and measurements. In order to verify this CAE Method, the calculated stresses on the leaf springs are compared with the results of strain gage measurements and the fatigue failures of leaf springs are correlated with the calculated damage values.
Technical Paper

Development of the TOP TIERTM Diesel Standard

2019-04-02
2019-01-0264
The TOP TIERTM Diesel fuel standard was first established in 2017 to promote better fuel quality in marketplace to address the needs of diesel engines. It provides an automotive recommended fuel specification to be used in tandem with regional diesel fuel specifications or regulations. This fuel standard was developed by TOP TIERTM Diesel Original Equipment Manufacturer (OEM) sponsors made up of representatives of diesel auto and engine manufacturers. This performance specification developed after two years of discussions with various stakeholders such as individual OEMs, members of Truck and Engine Manufacturers Association (EMA), fuel additive companies, as well as fuel producers and marketers. This paper reviews the major aspects of the development of the TOP TIERTM Diesel program including implementation and market adoption challenges.
Journal Article

Experimental and Numerical Investigation of the Under Hood Flow with Heat Transfer for a Scaled Tractor-Trailer

2012-04-16
2012-01-0107
Aerodynamic design and thermal management are some of the most important tasks when developing new concepts for the flow around tractor-trailers. Today, both experimental and numerical studies are an integral part of the aerodynamic and thermal design processes. A variety of studies have been conducted how the aerodynamic design reduces the drag coefficient for fuel efficiency as well as for the construction of radiators to provide cooling on tractor-trailers. However, only a few studies cover the combined effect of the aerodynamic and thermal design on the air temperature of the under hood flow [8, 13, 16, 17, 20]. The objective of this study is to analyze the heat transfer through forced convection for a scaled Cab-over-Engine (CoE) tractor-trailer model with under hood flow. Different design concepts are compared to provide low under hood air temperature and efficient cooling of the sub components.
Video

Maturity Level and Variant Validation of Mechatronic Systems in Commercial Vehicles

2011-12-05
Driver assistance systems (e.g. the emergency brake assist Active Brake Assist2, or ABA2 for short, in the Mercedes-Benz Actros) are becoming increasingly common in heavy-duty commercial vehicles. Due to the close interconnection with drivetrain and suspension control systems, the integration and validation of the functions make the most exacting demands on processes and tools involved in mechatronics development. Presenter Thomas Bardelang, Daimler AG
Technical Paper

Maturity Level and Variant Validation of Mechatronic Systems in Commercial Vehicles

2011-09-13
2011-01-2263
Driver assistance systems (e.g. the emergency brake assist Active Brake Assist2, or ABA2 for short, in the Mercedes-Benz Actros) are becoming increasingly common in heavy-duty commercial vehicles. Due to the close interconnection with drivetrain and suspension control systems, the integration and validation of the functions make the most exacting demands on processes and tools involved in mechatronics development. In addition to a multi-stage test process focusing on the functions of the driver assistance systems (software), the “electrical” aspects (hardware) also form part of holistic maturity level validation. The test process is supported by state-of-the-art, high-performance tools (e.g. automatable component test benches and overall vehicle HiL systems) which, in particular, allow quick and accurate configuration in line with different vehicle variants.
Technical Paper

Possibilities of Wall Heat Transfer Measurements at a Supercharged Euro VI Heavy-Duty Diesel Engine with High EGR-Rates, an In-Cylinder Peak Pressure of 250 Bar and an Injection Pressure up to 2500 Bar

2019-09-09
2019-24-0171
A raise of efficiency is the strongest selling point concerning the total cost of ownership (TCO), especially for commercial vehicles (CV). Accompanied by legislations, with contradictive development demands, satisfying solutions have to be found. The analysis of energy losses in modern engines shows three influencing parameters. Wall heat transfer (WHT) losses are awarded with the highest optimization potential. Critical for the occurrence of these losses is the WHT, which can be described by representing coefficients. To reduce WHT accompanying losses a decrease of energy transfer between combustion gas and combustion chamber wall is necessary. A measurement of heat fluxes is necessary to determine the WHT relations of the combustion chamber in an engine. As this has not been done for a Heavy-Duty (HD) engine, with peak pressures up to 250 bar, an increased in-cylinder turbulence and high exhaust gas recirculation (EGR)-rates before, it is presented in the following.
Technical Paper

Standardization of Wiring Harness Data Formats between Truck OEMs and Suppliers

2011-09-13
2011-01-2270
The continuously integration of electrics and electronics (EE) in the last decades is one of the main key drivers for innovation and business success of the Automotive OEMs. This is also applicable for truck manufacturers. On the other side factors like the rising vehicle complexity, number of variants and the warranty costs for EE issues are increasing the pressure on the engineering teams responsible for the mechatronic systems. To address these issues one of the key activities in the European market (focus on Germany) during the last decade was to introduce industry-wide standards for the data transfer of wiring harness data between OEM and harness supplier. In this paper the benefits and technical background of using the standards KBL and KOMP formats within the MB-Trucks brand will be presented. Moreover the role of the Information Technology (IT) will be explained in detail.
Technical Paper

The Truck of the Future: Autonomous and Connected Driving at Daimler Trucks

2017-05-10
2017-01-1931
Due to the continuous increasing highway transport and the decreasing investments into infrastructure a better usage of the installed infrastructure is indispensable. Therefore the operation and interoperation of assistance and telematics systems become more and more necessary. Regarding these facts Highway Pilot was developed at Daimler Trucks. The Highway Pilot System moves the truck highly automated and independent from other road users within the allowed speed range and the required security distance. Daimler Trucks owns diverse permissions in Germany and the USA for testing these technologies on public roads. Next generation is the Highway Pilot Connect System that connects three highly automated driving trucks. The connection is established via Vehicle-to-Vehicle communication (V2V).
X