Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Simulations of Heavy Truck Rollovers and Sleeper Restraint System Effectiveness

2014-09-30
2014-01-2420
Federal Motor Carrier Safety Requirement (FMCSR) 393.76(h) states that “a motor vehicle manufactured on or after July 1, 1971 and equipped with a sleeper berth must be equipped with a means of preventing ejection of the occupant of the sleeper berth during deceleration of the vehicle.” [1] Furthermore, this standard requires that “the restraint system must be designed, installed and maintained to withstand a minimum total force of 6,000 pounds applied toward the front of the vehicle and parallel to the longitudinal axis of the vehicle.” [1] Today, sleeper berths are equipped with sleeper restraint systems that function to contain the sleeper occupant inside the sleeper berth during reasonably foreseeable crashes. To assess the effectiveness of sleeper restraint systems, computer simulation models of the sleeper cab environment and these restraint systems were developed, with a simulated supine occupant in the sleeper.
Technical Paper

Sled Test Development and Occupant Protection Evaluation Based on the Frontal Crash Response of Heavy Trucks

2014-09-30
2014-01-2423
Full-scale vehicle crash testing is an accurate method to reproduce many real-world crash conditions in a controlled laboratory environment. However, the costs involved in performing full-scale crash tests can be prohibitive for some purposes. Dynamic sled testing is a lower cost and widely used method to obtain multiple, useful data sets for development of frontal crash mitigating technologies, systems and components. Wherever possible, dynamic sled tests should use vehicle-specific deceleration pulses determined from full-scale vehicle crash tests. This paper establishes a dynamic sled test protocol based on data collected from eight full-scale heavy vehicle frontal crash tests. The sled test protocol is intended to be utilized as a basis for building a body of knowledge needed to update heavy vehicle frontal impact test recommended practices. These recommended practices provide direction for the development of frontal crash mitigating technologies, systems and components.
X