Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

CFD Modeling of Mini and Full Flow Burner Systems for Diesel Engine Aftertreatment under Low Temperature Conditions

2012-09-24
2012-01-1949
With introductions of stringent diesel engine emission regulations, the DOC and DPF systems have become the mainstream technology to eliminate soot particles through diesel combustion under various operation conditions. Urea-based SCR has been the mainstream technical direction to reduce NOx emissions. For both technologies, low-temperature conditions or cold start conditions pose challenges to activate DOC or SCR emission-reduction performance. To address this issue, mini or full flow burner systems may be used to increase exhaust temperature to reach DOC light-off or SCR initiation temperature by combustion of diesel fuel. In essence, the burner systems incorporate a fuel injector, spray atomization, proper fuel / air mixing mechanisms, and combustion control as independent heat sources.
Technical Paper

Characterization of Materials for Exhaust Systems under Combined Mechanical and Corrosive Environment

2013-09-24
2013-01-2420
Corrosion resistance is an extremely important technical issue for long-term durability and reliability performance of exhaust components and systems. Failure mechanisms, such as corrosion, fatigue, corrosion-fatigue and stress corrosion cracking, have long been recognized as the principal degradation and failure mechanisms of vehicle components and systems under combined mechanical and corrosive environmental conditions. The combination of fluid flow, introduced by components such as advanced injectors, and corrosive environment leads to corrosion-erosion failure mechanism. These failure mechanisms are strongly material, environment, and loading dependent. How to characterize, screen, rank and select the materials in corrosion resistance is a big challenge posed to materials scientists and engineers. In this paper, the common corrosion related failure mechanisms appearing in auto exhaust systems are reviewed first.
Technical Paper

Comparison of Verity and Volvo Methods for Fatigue Life Assessment of Welded Structures

2013-09-24
2013-01-2357
Great efforts have been made to develop the ability to accurately and quickly predict the durability and reliability of vehicles in the early development stage, especially for welded joints, which are usually the weakest locations in a vehicle system. A reliable and validated life assessment method is needed to accurately predict how and where a welded part fails, while iterative testing is expensive and time consuming. Recently, structural stress methods based on nodal force/moment are becoming widely accepted in fatigue life assessment of welded structures. There are several variants of structural stress approaches available and two of the most popular methods being used in automotive industry are the Volvo method and the Verity method. Both methods are available in commercial software and some concepts and procedures related the nodal force/moment have already been included in several engineering codes.
Journal Article

Components Durability, Reliability and Uncertainty Assessments Based on Fatigue Failure Data

2014-09-30
2014-01-2308
Road vibrations cause fatigue failures in vehicle components and systems. Therefore, reliable and accurate damage and life assessment is crucial to the durability and reliability performances of vehicles, especially at early design stages. However, durability and reliability assessment is difficult not only because of the unknown underlying damage mechanisms, such as crack initiation and crack growth, but also due to the large uncertainties introduced by many factors during operation. How to effectively and accurately assess the damage status and quantitatively measure the uncertainties in a damage evolution process is an important but still unsolved task in engineering probabilistic analysis. In this paper, a new procedure is developed to assess the durability and reliability performance, and characterize the uncertainties of damage evolution of components under constant amplitude loadings.
Journal Article

Correlation Measures and Their Applications in Structural Dynamics and Data Analyses

2014-09-30
2014-01-2307
This paper reviews the correlation concepts and tools available, with the emphasis on their historical origins, mathematical properties and applications. Two of the most commonly used statistical correlation indicators, i.e., modal assurance criterion (MAC) for structural deformation pattern identification/correlation and the coefficient of determination (R2) for data correlation are investigated. The mathematical structure of R2 is critically examined, and the physical meanings and their implications are discussed. Based on the insights gained from these analyses, a data scatter measure and a dependency measure are proposed. The applications of the measures for both linear and nonlinear data are also discussed. Finally, several worked examples in vehicle dynamics analysis and statistical data analyses are provided to demonstrate the effectiveness of these concepts.
Journal Article

Development of Common Rail and Manifold Fluid Delivery Systems for Large Diesel Engine Aftertreatement

2012-09-24
2012-01-1961
EPA 2015 Tier IV emission requirements pose significant challenges to large diesel engine aftertreatment system (EAS) development aimed at reducing exhaust emissions such as NOx and PM. An EAS has three primary subsystems, Aftertreatment hardware, controls and fluid delivery. Fluid delivery is the subsystem which supplies urea into exhaust stream to allow SCR catalytic reaction and/or periodic DOC diesel dosing to elevate exhaust temperatures for diesel particulate filter (DPF) soot regeneration. The purpose of this paper is to discuss various aspects of fluid delivery system development from flow and pressure perspective. It starts by giving an overview of the system requirements and outlining theoretical background; then discusses overall design considerations, injector and pump selection criteria, and three main injector layouts. Steady state system performance was studied for manifold layout.
Technical Paper

Development of Urea SCR Systems for Large Diesel Engines

2011-09-13
2011-01-2204
EPA 2015 Tier IV emission requirements pose significant challenges to large diesel engine after treatment system development with respect to reducing exhaust emissions including HC, CO, NOx and Particulate Matter (PM). For a typical locomotive, marine or stationary generator engine with 8 to 20 cylinders and 2500 to 4500 BHP, the PM reduction target could be over 90% and NOx reduction target over 75% for a wide range of running conditions. Generally, HC, CO and PM reductions can be achieved by combining DOC, cDPF and active regeneration systems. NOx reduction can be achieved by injecting urea as an active reagent into the exhaust stream to allow NOx to react with ammonia per SCR catalysts, as the mainstream approach for on-highway truck applications.
Journal Article

Durability/Reliability Analysis, Simulation, and Testing of a Thermal Regeneration Unit for Exhaust Emission Control Systems

2012-09-24
2012-01-1951
Durability and reliability performance is one of the most important concerns of a recently developed Thermal Regeneration Unit for Exhaust (T.R.U.E-Clean®) for exhaust emission control. Like other ground vehicle systems, the T.R.U.E-Clean® system experiences cyclic loadings due to road vibrations leading to fatigue failure over time. Creep and oxidation cause damage at high temperature conditions which further shortens the life of the system and makes fatigue life assessment even more complex. Great efforts have been made to develop the ability to accurately and quickly assess the durability/reliability of the system in the early development stage. However, reliable and validated simplified engineering methods with rigorous mathematical and physical bases are still urgently needed to accurately manage the margin of safety and decrease the cost, whereas iterative testing is expensive and time consuming.
Journal Article

High-Temperature Life Assessment of Exhaust Components and the Procedure for Accelerated Durability and Reliability Testing

2012-09-24
2012-01-2058
Fatigue, creep, oxidation, or their combinations have long been recognized as the principal failure mechanisms in many high-temperature applications such as exhaust manifolds and thermal regeneration units used in commercial vehicle aftertreatment systems. Depending on the specific materials, loading, and temperature levels, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep-fatigue, fatigue-oxidation, creep-fatigue-oxidation. Several multiple failure mechanisms based material damage models have been developed, and products to resist these failure mechanisms have been designed and produced. However, one of the key challenges posed to design engineers is to find a way to accelerate the durability and reliability tests of auto exhaust in component and system levels and to validate the product design within development cycle to satisfy customer and market's requirements.
Technical Paper

Overview of Large Diesel Engine Aftertreatment System Development

2012-09-24
2012-01-1960
The introduction of stringent EPA 2015 regulations for locomotive / marine engines and IMO 2016 Tier III marine engines initiates the need to develop large diesel engine aftertreatment systems to drastically reduce emissions such as SOx, PM, NOx, unburned HC and CO. In essence, the aftertreatment systems must satisfy a comprehensive set of performance criteria with respect to back pressure, emission reduction efficiency, mixing, urea deposits, packaging, durability, cost and others. Given multiple development objectives, a systematic approach must be adopted with top-down structure that addresses top-level technical directions, mid-level subsystem layouts, and bottom-level component designs and implementations. This paper sets the objective to provide an overview of system development philosophy, and at the same time touch specific development scenarios as illustrations.
Technical Paper

Probabilistic Thermal-Fatigue Life Assessment for Vehicle Exhaust Components and Systems

2014-09-30
2014-01-2305
Thermo-mechanical fatigue (TMF) resistance characterization and life assessment are extremely important in the durability/reliability design and validation of vehicle exhaust components/systems, which are subjected to combined thermal and mechanical loadings during operation. The current thermal-fatigue related design and validation for exhaust products are essentially based on testing and the interpretation of test results. However, thermal-fatigue testing are costly and time consuming, therefore, computer aided engineering (CAE) based virtual thermal-fatigue life assessment tools with predictive powers are strongly desired. Many thermal-fatigue methods have been developed and eventually implemented into the CAE tools; however, most of them are based on deterministic life assessment approach, which cannot provide satisfactory explanation for the observed uncertainties introduced in thermal-fatigue failure data.
Journal Article

Sample Size Reduction Based on Historical Design Information and Bayesian Statistics

2013-09-24
2013-01-2440
Numerous test data have been generated in many testing institutions over the years and the historical information from previous similar designs and operating conditions can shed light on the current and future designs since they would share some common features when the changes are not drastic. To effectively utilize the historical information for current and future designs, two steps are necessary: (1) finding an approach to consistently correlate the test data; (2) utilizing Bayesian statistics, which can provide a rigorous mathematical tool for extracting useful information from the historical data. In this paper, a procedure for test sample size reduction is proposed based on historical fatigue S-N test data and Bayesian statistics. First, the statistical information is extracted from a large amount of fatigue test data collected over the years.
X