Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Computational Fluid Dynamics Model Creation and Simulation for Class 8 Tractor-Trailers

2023-08-18
2023-01-5051
The Environmental Protection Agency (EPA), in partnership with Research Triangle Institute (RTI International) and Auto Research Center (ARC-Indy), have created digital geometries of commercially available heavy-duty tractor-trailers. The goal of this effort was to improve the agency’s understanding of aerodynamic modeling of modern trucks and to provide opportunities for more consistent engagement on computational fluid dynamics (CFD) analyses. Sleeper and day cab tractors with aerodynamic features and a 53-foot box trailer with aerodynamic technology options were scanned to create high-resolution geometries. The scanning process consisted of a combination of physical scanning with a handheld device, along with digital post-processing. The completed truck geometries are compatible with most commercial CFD software and are publicly available for modeling and analyses.
Journal Article

Cycle-Average Heavy-Duty Engine Test Procedure for Full Vehicle Certification - Numerical Algorithms for Interpreting Cycle-Average Fuel Maps

2016-09-27
2016-01-8018
In June of 2015, the Environmental Protection Agency and the National Highway Traffic Safety Administration issued a Notice of Proposed Rulemaking to further reduce greenhouse gas emissions and improve the fuel efficiency of medium- and heavy-duty vehicles. The agencies proposed that vehicle manufacturers would certify vehicles to the standards by using the agencies’ Greenhouse Gas Emission Model (GEM). The agencies also proposed a steady-state engine test procedure for generating GEM inputs to represent the vehicle’s engine performance. In the proposal the agencies also requested comment on an alternative engine test procedure, the details of which were published in two separate 2015 SAE Technical Papers [1, 2]. As an alternative to the proposed steady-state engine test procedure, these papers presented a cycle-average test procedure.
Journal Article

Design and Demonstration of EPA's Integrated Drive Module for Commercial Series Hydraulic Hybrid Trucks and Buses

2015-09-29
2015-01-2850
The United States Environmental Protection Agency's (EPA) National Center for Advanced Technology (NCAT), located at its National Vehicle and Fuel Emissions Laboratory in Ann Arbor, Michigan, has been a global leader in development and demonstration of low-greenhouse gas emitting, highly fuel efficient series hydraulic hybrid drivetrain technologies. Advances in these exciting new technologies have stimulated industry to begin manufacturing hydraulic hybrids for both commercial truck and non-road equipment markets. Development activities are continuing for other markets, including light-duty vehicles. Given the commercial emergence of these low-greenhouse gas emitting series hydraulic hybrids, EPA has passed the leadership for further development to industry.
Journal Article

Determination of the PEMS Measurement Allowance for PM Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program

2012-04-16
2012-01-1250
This paper summarizes the Heavy-Duty In-Use Testing (HDUIT) measurement allowance program for Particulate Matter Portable Emissions Measurement Systems (PM-PEMS). The measurement allowance program was designed to determine the incremental error between PM measurements using the laboratory constant volume sampler (CVS) filter method and in-use testing with a PEMS. Two independent PM-PEMS that included the Sensors Portable Particulate Measuring Device (PPMD) and the Horiba Transient Particulate Matter (TRPM) were used in this program. An additional instrument that included the AVL Micro Soot Sensor (MSS) was used in conjunction with the Sensors PPMD to be considered a PM-PEMS. A series of steady state and transient tests were performed in a 40 CFR Part 1065 compliant engine dynamometer test cell using a 2007 on-highway heavy-duty diesel engine to quantify the accuracy and precision of the PEMS in comparison with the CVS filter-based method.
Technical Paper

Evaluation of Coastdown Analysis Techniques to Determine Aerodynamic Drag of Heavy-Duty Vehicles

2016-09-27
2016-01-8151
To investigate the feasibility of various aerodynamic test procedures for the Phase 2 Greenhouse Gas (GHG) Regulations for heavy-duty vehicles in the United States, the US Environmental Protection Agency conducted, through Southwest Research Institute (SwRI), coastdown testing of several heavy-duty tractors matched to a conventional 53-foot dry-van trailer. Three vehicle configurations were tested, two of which included common trailer drag-reduction technologies. Air speed was measured onboard the vehicle, and wind conditions were measured using a weather station placed along the road side. Tests were performed on a rural road in Texas. One vehicle configuration was tested over several days to evaluate day-to-day repeatability and the influence of changing wind conditions. Data on external sources of road forces, such as grade and speed dependence of tire rolling resistance, were collected separately and incorporated into the analysis.
Journal Article

Fuel-Savings from Aerodynamic Efficiency Improvements for Combination Tractor-Trailers Relative to Vehicle Speed

2016-09-27
2016-01-8133
Commercial, class-8 tractor-trailers were tested to develop a relationship between vehicle speed and fuel savings associated with trailer aerodynamic technologies representative of typical long-haul freight applications. This research seeks to address a concern that many long-distance U.S. freight companies hold that, as vehicle speed is reduced, the fuel savings benefits of aerodynamic technologies are not realized. In this paper, the reductions in fuel consumption were measured using the SAE J1231 test method and thru-engine fueling rates recorded from the vehicle’s electronic data stream. Constant speed testing was conducted on road at different speeds and corresponding testing was conducted on track to confirm results. Data was collected at four (4) vehicle speeds: 35, 45, 55, and 62 miles per hour. Two different trailer aerodynamic configurations were evaluated relative to a baseline tractor trailer.
Technical Paper

Wind-Averaged Drag Determination for Heavy-Duty Vehicles Using On-Road Constant-Speed Torque Tests

2016-09-27
2016-01-8153
To investigate the feasibility of various test procedures to determine aerodynamic performance for the Phase 2 Greenhouse Gas (GHG) Regulations for Heavy-Duty Vehicles in the United States, the US Environmental Protection Agency commissioned, through Southwest Research Institute, constant-speed torque tests of several heavy-duty tractors matched to a conventional 53-foot dry-van trailer. Torque was measured at the transmission output shaft and, for most tests, also on each of the drive wheels. Air speed was measured onboard the vehicle, and wind conditions were measured using a weather station placed along the road side. Tests were performed on a rural road in Texas. Measuring wind-averaged drag from on-road tests has historically been a challenge. By collecting data in various wind conditions at multiple speeds over multiple days, a regression-based method was developed to estimate wind-averaged drag with a low precision error for multiple tractor-trailer combinations.
X