Refine Your Search

Topic

Author

Affiliation

Search Results

Event

2024-04-25
Technical Paper

145 - 210 Horsepower Agricultural Tractor Noise Reduction Program

1993-09-01
932434
This paper summarizes the techniques and guidelines which were used to reduce the driver perceived noise level of a 145-210 HP series of agricultural tractors. Graphs of case study test results and comments on subjective noise quality are provided to guide the acoustic novice through the complexities of the vehicle sound environment in a methodical problem solving format.

2022 Thermal Management Systems Symposium

2024-04-25
Thermal Management Systems Symposium industry discusses latest regulatory impacts, applications to reduce engine emissions, conserve energy, reduce noise, improve the cabin environment, increase overall vehicle performance passenger, commercial vehicle industry.
Technical Paper

3D Aeroacoustics Simulation of a Complete Bus Exhaust System

2012-11-25
2012-36-0632
Health related problems in over populated areas are a major concern and as such, there are specific legislations for noise generated by transport vehicles. In diesel powered commercial vehicles, the source for noise are mainly related to rolling, transmission, aerodynamics and engine. Considering internal combustion engine, three factors can be highlighted as major noise source: combustion, mechanical and tailpipe. The tailpipe noise is considered as the noise radiated from the open terminations of intake and exhaust systems, caused by both pressure pulses propagating to the open ends of the duct systems, and by vortex shedding as the burst leaves the tailpipe (flow generated noise). In order to reduce noise generated by vehicles, it is important to investigate the gas interactions and what can be improved in exhaust line design during the product development phase.
Technical Paper

5480 Reach Truck-A New Concept in Reach Track Design

1987-09-01
871651
The new 5480 Reach Truck, designed at Dynamic Industries, introduces a movable frame between the main frame and the telescopic boom. The use of this movable frame allows the usually fixed boom pivot to be elevated for greater lifting heights with smaller boom sections. By combining the motions of the boom and the movable frame, horizontal motion at the boom tip is possible without moving the truck. With the movable frame, the total machine height and length can be reduced for a given lifting goal. Another advantage of the movable frame is the ability to reach further below grade than is now possible in the industry. The 5480 Reach Truck has a maximum lift of 54 feet (16.5 meters) and can reach 24 feet (7.3 meters) below-grade.
Technical Paper

A 900 Ton Crawler Crane with 12’ × 12’ Main Boom Cross Section Disassembles for Truck Transport on the Interstate

1987-09-01
871666
The LTL-900 Transi-Lift crane features front and rear crawler-mounted load platforms connected with a hoist-supporting five foot diameter pipe section. The pin-together main boom is available in lengths up to 400 feet and completely disassembles for ease of transport to and from the jobsite. The crane requires three operators and can hoist, boom, swing and travel simultaneously with maximum loads. Upending, moving and setting large refinery vessels is facilitated by the mobility of the crawler-supported crane on unprepared surfaces. Up to 1000 tons of 36 ton concrete beams or equivalent are required as counterweight to develop the ANSI B30.5 approved capacities.
Technical Paper

A Bus for Denver’s Mall

1981-11-01
811280
A unique shuttle bus is being constructed by Minicars, Inc., and Walter Vetter Karosserie-werk for Denver’s Transitway/Mall. The bus is designed for frequent stop, low speed service in a downtown pedestrian environment. It features a very low floor and multiple wide doors for rapid passenger boarding and deboarding. Two versions will be supplied for comparative evalation, a low noise diesel configuration and a battery-electric configuration. Either version can subsequently be converted to the alternative propulsion system.
Technical Paper

A Commercial Excavator: Analysis, Modelling and Simulation of the Hydraulic Circuit

2012-09-24
2012-01-2040
The paper addresses some aspects of an ongoing research on a commercial compact excavator. The interest is focused on the analysis and modelling of the whole hydraulic circuit that, beside a load sensing variable displacement pump, features a stack of nine proportional directional control valves modules of which seven are of the load sensing type. Loads being sensed are the boom swing, boom, stick and bucket, right and left track motors and work tools; instead, the blade and the turret swing users do not contribute to the load sensing signal. Of specific interest are the peculiarities that were observed in the stack. In fact, to develop an accurate AMESim modelling, the stack was dismantled and all modules analysed and represented in a CAD environment as 3D parts. The load sensing flow generation unit was replaced on the vehicle by another one whose analysis and modelling have been developed using available design and experimental data.
Technical Paper

A Design Methodology for Reducing Product Development Lead Time

1983-09-12
831341
The need for a foreshortened product development lead time has become a necessity, in today's economy, to the efficient manufacturing of off-highway mining trucks. This paper reviews the approach taken by one noted truck manufacturer. By utilizing finite element analysis, plastic scale modeling techniques, and a comprehensive full scale test facility, the development lead time of the WABCO 100 Ton HAULPAK* was reduced to 60% of that normally required for the development of a new product from conceptual layout to production release.
Technical Paper

A Detail Study of Axle Shaft Stress State Change due to Vertical Bending Load in a Commercial Vehicle Axle

2021-09-22
2021-26-0328
Heavy commercial vehicle axle shafts are designed for torsion load. Typically, axle shaft fracture mode during the test is torsional in nature through either shaft body diameter or spline end. However, some of the field return axles shows fracture mode on axle shaft flange. This fracture mode does not resemble with a typical lab test torsional fracture. Metallurgical investigation report indicated that the fracture mode is bending in nature. This paper thus focuses on detail study of change in boundary condition and load transfer path under abusive vertical bending load on axle. A detail finite element analysis is performed to understand stress state change in axle shaft under this condition. A fracture hypothesis is proposed based on observations of finite element analysis results. A detail case study is presented depicting correlation of proposed hypothesis with physical fracture mode.
Technical Paper

A Detailed Study on Differential Bearing Adjuster Ring Thread Engagement and Joint Strength, under Combined Bending and Axial Loading

2021-09-22
2021-26-0370
Adjuster rings are used in commercial vehicle axle assembly to preload differential bearings and provide support in the axial direction. Adjuster along with the carrier and bearing cap combined to form a threaded joint. Adjuster with external threads engages with internal threads formed in carrier and bearing cap. Preload in differential assembly maintains the system rigidity and helps to maintain an optimized hypoid gear engagement. An adequate preload is important to achieve a desirable bearing life. Reduction in thread engagement at adjuster joint fully or partially will cause a reduction in preload and can lead to gear misalignment. This can cause severe durability concerns. In some cases, it is observed that under vehicle operating loads adjuster ring is backed off from its assembled condition by bending the split pin (split pin is, positive lock, used to maintain adjuster position) and adjuster threads were stripped off.
Technical Paper

A Distributed Sensor for Sensing Dynamic Deflections

1998-09-14
981966
A distributed sensor is created to sense the rate of change in deflection of beam-like structures such as crane booms. This sensor will be useful in electrohydraulic compensation of boom deflections. The sensor is made of an array of strain-sensitive segments such as strain gages or piezoelectric film. In this example, segments of piezoelectric film convert strains on the surface of a vibrating beam into electrical outputs. These outputs are connected to low impedance signal conditioners. The output of the signal conditioners are then interpolated with a weighting vector that incorporates Lagrange polynomials, specified boundary conditions, and the desired location(s) of measurement. A simple linear combiner circuit combines the electrical outputs into the deflection velocity at the desired points.
Technical Paper

A Finite Element Method Analysis of Heavy Duty Axle Bearing Loads

1991-09-01
911798
Pinion bearing loads of a heavy duty rear truck axle were determined by Finite Element Method Analysis (FEM). The results were compared with measured loads. This report describes the method used to measure bearing loads, the FEM model used, and the comparison of the results.
Technical Paper

A Finite Element Modeling Approach for Stability Analysis of Partially Filled Tanker Trucks

1999-11-15
1999-01-3708
The rollover threshold for a partially filled tanker truck carrying fluid cargo is of great importance due to the catastrophic nature of accidents involving such vehicles, particularly when payloads are toxic and flammable. In this paper, a method for determining the threshold of rollover stability of a specific tanker truck is presented using finite element analysis methods. This approach allows the consideration of many variables which had not been fully incorporated in past models, including nonlinear spring behavior and tank flexibility. The program uses simple mechanical pendulums to simulate the fluid sloshing affects, beam elements to match the torsional and bending stiffness of the tank, and spring damper elements to simulate the suspension. The finite element model of the tanker truck has been validated using data taken by the U.S. Army Aberdeen Test Center (ATC) on a M916A1 tractor/ Etnyre model 60PRS 6000 gallon trailer combination.
Technical Paper

A Finite Element and Experimental Analysis of a Light Truck Leaf Spring System Subjected to Pre-Tension and Twist Loads

2005-11-01
2005-01-3568
In this study the finite element method is used to simulate a light truck multi-leaf spring system and its interaction with a driven axle, u-bolts, and interface brackets. In the first part of the study, a detailed 3-D FE model is statically loaded by fastener pre-tension to determine stress, strain, and contact pressure. The FE results are then compared and correlated to both strain gage and interface pressure measurements from vehicle hardware test. Irregular contact conditions between the axle seat and leaf spring are investigated using a design of experiments (DOE) approach for both convex and discrete step geometries. In the second part of the study, the system FE model is loaded by both fastener pre-tension and external wheel end loads in order to obtain the twist motion response. Torsional deflection, slip onset, and subsequent slip motion at the critical contact plane are calculated as a function of external load over a range of Coulomb friction coefficients.
Technical Paper

A Low-Cost System for Road Induced Tire Cavity Noise Control (RTNC)

2024-06-12
2024-01-2961
The transition from ICE to electric power trains in new vehicles along with the application of advanced active and passive noise reduction solutions has intensified the perception of noise sources not directly linked to the propulsion system. This includes road noise as amplified by the tire cavity resonance. This resonance mainly depends on tire geometry, air temperature inside the tire and vehicle speed and is increasingly audible for larger wheels and heavier vehicles, as they are typical for current electrical SUV designs. Active technologies can be applied to significantly reduce narrow band tire cavity noise with low costs and minimal weight increase. Like ANC systems for ICE powertrains, they make use of the audio system in the vehicle. In this paper, a novel low-cost system for road induced tire cavity noise control (RTNC) is presented that reduces the tire cavity resonance noise inside a car cabin.
Technical Paper

A New Method Development to Predict Brake Squeal Occurrence

1994-11-01
942258
A new method to predict brake squeal occurrence was developed by MSC under contract to Ford Motor Company. The results indicate that the stability characteristics of this disc brake assembly are governed mainly by the frictional properties between the pads and rotor. The stability is achieved when the friction coefficient of the pads is decreasing as the contact force increases. Based on the results, a stable brake system can be obtained without changing the brake structure by incorporating the appropriate frictional coefficient in the brake system. The method developed here can be also used as a tool to test the quality of any brake design in the early design stage.
Technical Paper

A New Milestone is Set for Light and Medium Truck Transmission Profiles

1986-11-01
861980
The paper covers a new generation of manual transmissions for light and medium-duty trucks, vans and buses, initially introduced in a 5-speed version. The product reflects levels of driving comforts which are new to this class of vehicle worldwide with respect to shiftability, shift feel, noise emission, efficiency and durability.
Technical Paper

A New Model Describing the Formation of Heat Cracks in Brake Discs for Commercial Vehicles

2018-10-05
2018-01-1882
During the development process of brake discs for commercial vehicles, heat cracks are a frequent problem. Since no profound model to forecast the occurrence of cracks has been presented yet, their prediction is hardly ever possible. The standardized heat crack test puts the brake disc under severe thermomechanical load and therefore forces it into cracking. In this paper, results from a series of heat crack tests on the dynamometer are presented, which provide insight into the hidden processes that accelerate or slow down the heat crack propagation in brake discs. This includes an extensive experimental setup using a thermographic camera, a set of capacitive displacement sensors, a pyrometer, and sliding thermocouples as well as a unique eddy-current heat crack detector that was developed at TU Darmstadt. Continuous monitoring of disc deformation, surface temperature, and crack propagation at high sampling rates provides the base for a new, profound causal model.
X