Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1988 Chevrolet/GMC Full-Size Pickup Truck Aerodynamics

1987-11-01
872274
This paper is a summary of the aerodynamic development of the 1988 Chevrolet and GMC pickup truck. Comprehensive drag reduction work was performed with clay models from the original concept through the detailed full-scale model. In addition, the aerodynamic development included wind rush noise reduction, optimization of engine cooling air flow, and body surface pressures for HVAC performance.
Technical Paper

A CFD Study of Drag Reduction Devices for a Full Size Production Pickup Truck

2015-04-14
2015-01-1541
Various drag reduction strategies have been applied to a full size production pickup truck to evaluate their effectiveness by using Computational Fluid Dynamics (CFD). The drag reduction devices evaluated in this study were placed at the rear end of the truck bed and the tailgate. Three types of devices were evaluated: (1) boat tail-like extended plates attached to the tailgate; (2) mid-plate attached to the mid-section of the tailgate and; (3) flat plates partially covering the truck bed. The effect of drag reduction by various combinations of these three devices are presented in this paper. Twenty-four configurations were evaluated in the study with the best achievable drag reduction of around 21 counts (ΔCd = 0.021). A detailed breakdown of the pressure differentials at the base of the truck is provided in order to understand the flow mechanism for the drag reductions.
Technical Paper

A Comparison of Braking Performance of Asbestos, Non-Asbestos, and Semi-Metallic Friction Material

1990-10-01
902272
To date, no definitive work to quantify and compare the braking rating horsepower relationships between vehicles equipped with brake assemblies containing asbestos, non-asbestos, and semi-metallic friction material has been completed. This paper will report the results of a brake fade evaluation performed on a 34,000-lb. GVW vehicle in accordance with SAE J880 Brake System Rating Test Code Procedures and has quantified braking horsepower, fade temperature resistance, thermal response temperature rise, lining wear, and drum wear.
Journal Article

A Comparison of Full Scale Aft Cavity Drag Reduction Concepts With Equivalent Wind Tunnel Test Results

2013-09-24
2013-01-2429
Comparison studies have been conducted on a 1:16th scale model and a full scale tractor trailer of a variety of sealed aft cavity devices as a means to develop or enhance commercial drag reduction technology for class 8 vehicles. Various base cavity geometries with pressure taps were created for the scale model. The studies confirmed that length has an important effect on performance. The interaction of the boat-tailed aft cavity with other drag reduction devices, specifically side skirts, was investigated with results showing no discernable drag performance interaction between them. Overall, the experiments show that a boat-tailed aft cavity can reduce the drag up to 13%. Full-scale tests of a commercially derived product based on these scale tests were also completed using SAE Type II testing procedures. Full-scale tests indicated a fuel savings of over 6.5%.
Technical Paper

A Composite Approach to Reducing Abrasive Wear

1983-09-12
831375
“Today, wearing parts are regularly subjected to abnormal loading conditions. They must be able to accept these conditions without failure. In continuous operations, unscheduled downtime greatly increases maintenance costs, not to mention the cost of lost production. White iron castings offer premium abrasion resistance for many of these applications, but are often not used due to the possibility of brittle failure and the difficulty of mechanical attachment. This paper discusses the properties and applications of a composite of martensitic white iron and mild steel. This laminate will accept medium to high impact without loss of service failure, and can be installed by mechanical means or with welded attachment.”
Technical Paper

A Computer Simulation of the Effect of Wind on Heavy Truck Fuel Consumption Testing

2010-10-05
2010-01-2039
A computer simulation was developed to investigate the effect of wind on test track estimation of heavy truck fuel efficiency. Monte Carlo simulations were run for various wind conditions, both with and without gusts, and for two different vehicle aerodynamic configurations. The vehicle configurations chosen for this study are representative of typical Class 8 tractor trailers and use wind tunnel measured drag polars for performance computations. The baseline (control) case is representative of a modern streamlined tractor and conventional trailer. The comparison (test) case is the baseline case with the addition of a trailer drag reduction device (trailer skirt). The integrated drag coefficient, overall required power, total fuel consumption, and average rate of fuel consumption were calculated for a heavy truck on an oval test track to show the effect of wind on test results.
Technical Paper

A Computer-Aided System for Evaluation of Off-Road Wheeled Vehicle Mobility

1995-09-01
952120
A Computer Aided System (CAS) is developed in order to evaluate off-road wheeled vehicle mobility. The system takes into consideration both vehicle technical parameters and the main specifications of the soil on which the vehicle is expected to operate. Thirty seven vehicle technical parameters organized in nine groups are considered. These groups are: weights, engine parameters, dimensions, performance, transmission, steering, brakes, tires, and self recovery means. The main soil specifications of the soil considered are the soil type (clay, silt, or sand) and the shear and bearing resistance represented by the cone index or the gradient cone index. The evaluation process depends on considering a datum value for each vehicle technical parameter. These datum values or norms are obtained from a statistical analysis study of the technical parameters for a sample of 155 off-road wheeled vehicles representing different schools from all over the world [1].
Technical Paper

A Drag-Reduction Prediction Model for Truck Platoons

2024-04-09
2024-01-2548
Truck platooning is an emerging technology that exploits the drag reduction experienced by bluff bodies moving together in close longitudinal proximity. The drag-reduction phenomenon is produced via two mechanisms: wake-effect drag reduction from leading vehicles, whereby a following vehicle operates in a region of lower apparent wind speed, thus reducing its drag; and base-drag reduction from following vehicles, whereby the high-pressure field forward of a closely-following vehicle will increase the base pressure of a leading vehicle, thus reducing its drag. This paper presents a physics-guided empirical model for calculating the drag-reduction benefits from truck platooning. The model provides a general framework from which the drag reduction of any vehicle in a heterogeneous truck platoon can be calculated, based on its isolated-vehicle drag-coefficient performance and limited geometric considerations.
Technical Paper

A Dynamic Model for the Rolling Resistance Considering Thermal States and Conditions

2024-04-09
2024-01-2296
Planning for charging in transport missions is vital when commercial long-haul vehicles are to be electrified. In this planning, accurate range prediction is essential so the trucks reach their destinations as planned. The rolling resistance significantly influences truck energy consumption, often considered a simple constant or a function of vehicle speed only. This is, however, a gross simplification, especially as the tire temperature has a significant impact. At 80 km/h, a cold tire can have three times higher rolling resistance than a warm tire. A temperature-dependent rolling resistance model is proposed. The model is based on thermal networks for the temperature at four places around the tire. The model is tuned and validated using rolling resistance, tire shoulder, and tire apex temperature measurements with a truck in a climate wind tunnel with ambient temperatures ranging from -30 to 25 °C at an 80 km/h constant speed.
Technical Paper

A Full Scale Class 8 Conventional Tractor-Trailer in the 9×9m Wind Tunnel

1988-10-01
881876
This paper outlines the techniques used to install both a full scale and a half scale tractor-trailer model in the 9×9 meter National Research Council of Canada wind tunnel in Ottawa, Canada. The objectives were to measure the cooling drag of an active cooling system and to investigate the aerodynamic testing limits of long, yawed models inside a solid wall wind tunnel. The tunnel interference problem is discussed as it pertains to the upstream boundary, test section floor, downstream boundary, ceiling and side walls and tractor-trailer surface pressure measurements. A potential solution to the problem, however, is the subject of a follow-up paper.
Technical Paper

A Materials Selection Tool for Automotive Structural and Body Skin Systems

1988-09-01
881303
The traditional approach to materials selection is to compare the results of direct substitution of alternative materials on an individual part-by-part basis. The engineer then frequently faces so many design constraints that use of a new material is infeasible. This approach also precludes redesign to optimize the characteristics of new materials. A methodology is presented which facilitates the consideration of a large system comprised of many components. The management science technique of “multi-attribute utility analysis” is applied as a tool for use by automotive design engineers. Attributes include capital cost, piece cost, weight, design flexibility and corrosion resistance. The results serve as a decision making tool to determine which design provides the greatest overall value. Also, the results may be used as a design aid to quantify desirable tradeoffs between attributes, thus pointing the way towards optimal redesign.
Journal Article

A Method for Truck Underbody Aerodynamic Investigation

2016-09-16
2016-01-9020
The underbody of a truck is responsible for an appreciable portion of the vehicle’s aerodynamic drag, and thus its fuel consumption. A better understanding of the underbody aerodynamics could lead to designs that are more environmentally friendly. Unfortunately there are difficulties with correctly replicating the ground condition and rotating wheels when using the classical approach of a wind-tunnel for aerodynamic investigation. This in turn leads to computational modelling problems. A lack of experimental data for Computational Fluid Dynamics (CFD) validation means that the flow field in this area has seldom been investigated. There is thus very little information available for the optimisation and design of underbody aerodynamic devices. This paper investigates the use of a water-towing tank, which allows the establishment of the correct near-ground flow while permitting good optical access. Using a 1/10 scale model, Reynolds Numbers of around 0.7 million are achieved.
Journal Article

A New Approach for the Reduction of Aerodynamic Drag of Long-Distance Transportation Vehicles

2013-09-24
2013-01-2414
The optimization of aerodynamic drag represents an important research area for the fuel consumption reduction of heavy duty commercial vehicles. Today's design of tractor-trailers is significantly influenced by legal conditions regarding the vehicle dimensions and the provision of a maximum transportation volume. These boundary conditions lead to brick-shaped trailer outer geometries, especially at the rear ends. That is the reason why the investigations of aerodynamic optimization of commercial vehicle trailers are predominantly restricted to detail measures up to now. The present publication treats the aerodynamic characteristics of general modifications on the outer contour of long-distance haulage trailers in regard of reducing the drag resistance and, thus, potentially also the fuel consumption in highway traffic. A new approach for the realization of a variable outer contour of trailers provides the possibility to adjust the rear end to an aerodynamically optimized shape.
Journal Article

A Novel Technique to Determine Free-Stream Velocity from Ground-Based Anemometric Measurements During Track Tests

2016-09-27
2016-01-8023
A novel method was developed to predict the free-stream velocity experienced by a traveling vehicle based on track-side anemometric measurements. The end objective of this research was to enhance the reliability of the prediction of free-stream conditions in order to improve the accuracy of aerodynamic drag coefficient (CD) assessments from track tests of surface vehicles. Although the technique was applied to heavy-duty vehicles in the present work, it is equally applicable to any vehicle type. The proposed method is based on Taylor’s hypothesis, a principle applied in fluid mechanics to convert temporal signals into the spatial domain. It considers that the turbulent wind velocity fluctuations measured at one point are due to the "passage of an unchanging pattern of turbulent motion over the point". The method is applied to predict the wind velocity that the vehicle will experience as it encounters a wind pattern detected earlier by an anemometer located upwind.
Technical Paper

A Numerical Simulation on the Drag Reduction of Large-Sized Bus using Rear-Spoiler

2002-11-18
2002-01-3070
The aerodynamic characteristics of automobiles have received substantial interest recently. Detailed knowledge of vehicle aerodynamics is essential to improve fuel efficiency and enhance stability at high-speed cruising. In this study, a numerical simulation has been carried out for three-dimensional turbulent flows around a commercial bus body. Also, the effect of a rear-spoiler attached at the rear end of the bus body was investigated. The Navier-Stokes equation is solved with the SIMPLE method in a general curvilinear coordinates system. RNG k- ε turbulence model with the MARS scheme was used for evaluating aerodynamic forces, velocity and pressure distribution. The results show that complex wake structure in the immediate rear of the bus body has been confirmed. The rear-spoiler modifies the near wake structure and decreases aerodynamic drag and improvement in lift force was achieved.
Journal Article

A Parametric Assessment of Skirt Performance on a Single Bogie Commercial Vehicle

2013-09-24
2013-01-2415
A Department of Energy funded research project currently in the final stages of completion has resulted in a web-based tool that gives non-expert users the ability to add aerodynamic devices to a CFD model of a single bogie trailer and generalized tractor model. This model was used to assess the aerodynamic performance of skirt geometries. The skirts were defined using 5 independent geometric parameters and 2 installation parameters. These parameters allow enough freedom in the geometry definition to capture the shape and installation position and angle of a wide number of commercially available skirts on the market today. Using a Design of Experiments approach, the aerodynamic drag response of the truck and trailer to any parametric change in the skirt geometry has been determined across a range of yaw angles.
Technical Paper

A Perspective on the Performance of Carburized Gear Steels

1984-09-01
841089
Recent research on carburized steels has demonstrated a correlation between the toughness properties of a carburized steel and the fatigue performance in combined load testing (high-cycle fatigue plus overload). The data presented suggest that, for applications where loads above the fatigue limit are encountered, both processing and alloying must be considered. Results from a number of investigations are reviewed to illustrate that high-cycle fatigue properties are controlled primarily by the processing, whereas toughness characteristics, such as resistance to random cyclic loading, are a result of the alloying.
Technical Paper

A Safety Mechanism for Agricultural Tractors

2012-04-16
2012-01-1180
This paper presents a safety mechanism that is supposed to be used to enhance in the agricultural tractors. A tractor instability situation may be occurring when drawbar force becomes large enough to cause no load (weight) on its front axle. This endangers the tractor stability and the tractor will be overturned rearward. The proposed tractor safety mechanism is based on monitoring the location of tractor center of gravity and progressively shifting forward in a dead weight to counteract for the effect of tractors front lift-up. A laboratory tractor model has been developed in such a way that the lift of its front is sensed and accordingly a mechanism that shifts a movable dead weight ahead to the front a distance that automatically ensures its longitudinal stability. Such arrangement provides a solution that practically ensures longitudinal tractor stability in the situations when maximum drawbar-pull is suddenly developed.
Technical Paper

A Simplified CO2 and Fuel Consumption Model for Buses Derived from VECTO Simulations

2021-09-05
2021-24-0075
New heavy-duty vehicles are simulated with the Vehicle Energy Consumption Calculation Tool (VECTO) to certify their fuel consumption and CO2 emissions in the European Union. The vehicle manufacturer runs the simulation tool and requires the vehicle components' characteristics to simulate the vehicle over standardized mission profiles. The detailed component characteristics required to run the tool are not always publicly available. In this work, a simplified model was developed to predict the fuel consumption and CO2 emissions of heavy buses over the VECTO mission profiles. It requires only the basic vehicle properties as input, such as the air drag, tire rolling resistance, mass, drivetrain efficiency and auxiliary power use. The model was derived from detailed VECTO simulations of numerous variants of a diesel high floor bus, a diesel low floor bus and a CNG low floor bus.
Journal Article

A Spline-Based Modeling Algorithm for Application to Aerodynamic Shape Optimization Based on CFD Analysis

2017-03-28
2017-01-1510
In early phases of conceptual design stages for developing a new car in the modern automobile industry, the lack of systematic methodology to efficiently converge to an agreement between the aesthetics and aerodynamic performance tremendously increases budget and time. During these procedures, one of the most important tasks is to create geometric information which is versatilely morphable upon the demands of both of stylists and engineers. In this perspective, this paper proposes a Spline-based Modeling Algorithm (SMA) to implement into performing aerodynamic design optimization research based on CFD analysis. Once a 3-perspective schematic of a car is given, SMA regresses the backbone boundary lines by using optimum polynomial interpolation methods with the best goodness of fit, eventually reconstructing the 3D shape by linearly interpolating from the extracted boundaries minimizing loss of important geometric features.
X