Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Lifetime Assessment of Cylinder Heads for Efficient Heavy Duty Engines Part I: A Discussion on Thermomechanical and High-Cycle Fatigue as Well as Thermophysical Properties of Lamellar Graphite Cast Iron GJL250 and Vermicular Graphite Cast Iron GJV450

2017-03-28
2017-01-0349
Cast iron materials are used as materials for cylinder heads for heavy duty internal combustion engines. These components must withstand severe cyclic mechanical and thermal loads throughout their service life. While high-cycle fatigue (HCF) is dominant for the material in the water jacket region, the combination of thermal transients with mechanical load cycles results in thermomechanical fatigue (TMF) of the material in the fire deck region, even including superimposed TMF and HCF loads. Increasing the efficiency of the engines directly leads to increasing combustion pressure and temperature and, thus, lower safety margins for the currently used cast iron materials or alternatively the need for superior cast iron materials. In this paper (Part I), the TMF properties of the lamellar graphite cast iron GJL250 and the vermicular graphite cast iron GJV450 are characterized in uniaxial tests and a mechanism-based model for TMF life prediction is developed for both materials.
Technical Paper

Use of Powdered Metal for a Valve Bridge in a 4-Valve Heavy Duty Diesel Engine

1998-02-23
980330
A new 12.5 L four-valve heavy duty diesel engine has demonstrated that Powdered Metal (PM) is an effective material alternative to wrought steel for the valve bridge. The valve bridge, an element that spans the pair of intake or exhaust valves, allows a single rocker arm to actuate the pair of valves. The component is subjected to a high number of cycles at a moderately high load and geometry precision is essential for desirable wear characteristics. The PM material selected, MPIF FL4605-120HT, has replaced 8620 steel after making component geometry changes. The PM part has a higher load capacity than the original design with equivalent wear characteristics and offers a 80% cost saving over the original design. This paper presents the geometry changes defined by FEA analysis and component testing performed to verify the change from wrought steel to PM. A required characteristic of this component is moderately high fatigue strength.
X