Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2-Stage Torque Converter and Double Clutch

1952-01-01
520220
THE development of the two-stage torque converter with automatic double clutch is presented here. The author covers particularly the substitution of casting for fabrication for several of the units in the transmission.
Technical Paper

2005 Ford GT - Vehicle Aerodynamics - Updating a Legend

2004-03-08
2004-01-1254
This paper documents the processes and methods used by the Ford GT team to meet aerodynamic targets. Methods included Computational Fluid Dynamics (CFD) analysis, wind tunnel experiments (both full-size and scale model), and on-road experiments and measurements. The goal of the team was to enhance both the high-speed stability and track performance of the GT. As a result of the development process, significant front and rear downforce was achieved while meeting the overall drag target.
Technical Paper

2006 Chevrolet Corvette Z06 Aluminum Spaceframe

2005-04-11
2005-01-0465
This paper describes the engineering, manufacturing and integration necessary to produce the Corvette's first ever all-aluminum spaceframe (see Figure 1). The engineering and manufacturing of the spaceframe was a joint venture between General Motors and suppliers ALCOA (Aluminum Company of America) and Dana Corporation. ALCOA led the initial design of the spaceframe; Dana Corp led the manufacturing; General Motors' Engineering and Manufacturing groups led the integration of the assembly. The aluminum spaceframe design is modeled after the baseline steel structure of the Corvette coupe. The aluminum spaceframe reduces 140 lbs from the steel baseline and enters the plant at 285 lbs. This frame allows the 2006 Corvette Z06 to enter the market at a 3100 lbs curb weight. Aluminum casting, extruding, stamping, hydroforming, laser welding, Metal Inert Gas (MIG) welding, Self Pierce Riveting (SPR), and full spaceframe machining make up the main technologies used to produce this spaceframe.
Technical Paper

2006 Chevrolet Corvette Z06 Aluminum Spaceframe Design and Engineering Technology

2005-04-11
2005-01-0466
The General Motors (GM) Corvette design team was challenged with providing a C6 Z06 vehicle spaceframe that maintained the structural performance of its C5 predecessor while reducing mass by at least 56 kg. An additional requirement inherent to the project was that the design must be integrated into the C6 assembly processes with minimal disruption, i.e. seamless integration. In response to this challenge, a collaborative team was formed, consisting of design engineers from General Motors, Alcoa and Dana Corporation. The result of this collaborative effort is an aluminum Z06 spaceframe that satisfies the high performance expectations of the vehicle while reducing the mass by approximately 62 kg. The frame consists of aluminum extrusions, castings and sheets joined by MIG welding, laser welding and self-piercing rivets. The extrusions are 6XXX series alloys, the castings are permanent mold A356 while the sheet panels are formed from the 5XXX series of alloys.
Technical Paper

72 Curved Fins and Air Director Idea Increases Airflow through Brake Rotors

1999-03-01
1999-01-0140
Hayes Lemmerz has pursued fin configurations in straight and curved fin rotors to achieve high airflow velocity. The largest increase in airflow velocity of 37.2% is achieved by curving fins to a specific entry and exit angle and increasing surface area by increasing fin number. There is a need for funneling air into the narrow entry in the hub area. The new “Hayes Air Director” successfully channels air into the curved fins. Hayes Lemmerz is in the process of casting rotors with curved fins and the air director idea. Dynamometer and vehicle tests will follow. The current renwood model of the rotor design shows 34.8 to 37.2% increase in airflow velocity when tested on the Hayes Airflow machine.
Technical Paper

A 360×226 Pixel CMOS Imager Chip Optimized for Automotive Vision Applications

2001-03-05
2001-01-0317
Multiple automotive systems are now being developed which require an imager or vision chip to provide information regarding vehicle surroundings, vehicle performance, and vehicle passenger compartment status. Applications include lane departure, lane tracking, collision avoidance, as well as occupant position, impaired driver, and occupant identification. These applications share many requirements, including robust design, tolerance for the automotive environment, built in self-test, wide dynamic range, and low cost. In addition, each application has unique requirements for resolution, sensitivity, imager aspect ratio, and output format. In many cases, output will go directly to vehicle systems for processing, without ever being displayed to the driver. Commercial imager chips do not address this wide spectrum of requirements. A CMOS imager chip has been designed to address these unique automotive requirements.
Technical Paper

A Backbone in Automotive Software Development Based on XML and ASAM/MSR

2004-03-08
2004-01-0295
The development of future automotive electronic systems requires new concepts in the software architecture, development methodology and information exchange. At Bosch an XML and MSR based technology is applied to achieve a consistent information handling throughout the entire software development process. This approach enables the tool independent exchange of information and documentation between the involved development partners. This paper presents the software architecture, the specification of software components in XML, the process steps, an example and an exchange scenario with an external development partner.
Technical Paper

A Bigger Payload from Steel Foundries

1975-02-01
750575
The existing market conditions place heavy demands on the steel foundries to increase their capacity and output. Expansion hinges on the ability of the foundry to “earn the dollar” to permit the modernization of existing facilities and construction of new plants. It also requires that the foundry industry modernize its production methods and techniques; update its equipment; and that the consumer engineer assist in developing casting design features that will be more readily adaptable to the capabilities of the foundry operation. “A Bigger Payload from Steel Foundries” requires more than physical expansion-it demands cooperative and intelligent endeavor on the part of foundry management and consumer engineering.
Technical Paper

A Case Study of a Die-Cast Magnesium Structure Supporting Transmission Shifter Mechanisms and Interfaced with other Structural Systems

2004-03-08
2004-01-0130
During the last several years the use of magnesium die-castings for automotive applications has been on the rise. Magnesium's use in die-cast form has been expanding at an average growth rate of more than 15% a year. Reasons for the increase are both practical and economic. Magnesium die-castings offer components having the lowest mass when compared to almost any other structural material. Magnesium die-alloys exhibit properties that bridge the gap between engineered plastics and metals. The mechanical performance ratios (strength-to-weight and stiffness-to-weight) of magnesium also compete favorably with metals and plastics. Economically, magnesium alloys prices have fallen during the last several years making them extremely competitive with other materials.
Technical Paper

A Comparative Design Study for Aluminium and Magnesium Automatic Transmission Converter Housings

2001-10-01
2001-01-3173
The demand for vehicles with improved NVH characteristics, fuel economy and emissions control has increased dramatically in recent years. To meet these objectives stiffer and lighter housings are required so as to avoid troublesome driveline vibrations, while at the same time produce lighter structures to reduce the overall vehicle weight and improved fuel economy. A feasibility study was undertaken to examine the differences between the use of magnesium alloy and aluminium alloy for an automatic transmission converter housing. The design process, design constraints, design methodology, alloy selection and some unique magnesium design requirements are outlined. The differences between the two designs are investigated by simulating their static and dynamic performances using Finite Element Analysis (FEA). A sand cast prototype was produced for the first stage of the feasibility study, with the ultimate aim to produce die cast magnesium converter housings if feasible.
Technical Paper

A Comparative Study of Four Alloys for Automotive Brake Drums

1969-02-01
690443
A drag dynamometer was used to evaluate the performance of automotive brake drums made from four kinds of materials with different thermal conductivities. In the order of decreasing thermal conductivity they are chromium copper, aluminum/cast iron composite, cast iron, and nickel-aluminum bronze. All of the drums were of the standard configuration used in SAE J 661a, or closely approximated it. The drums were run in conjunction with three types of lining materials: nonabrasive, moderately abrasive, and highly abrasive. Temperatures near the lining/drum interface, coefficients of friction, and lining wear were measured and compared. For a given amount of work done, the temperature near the drum surface was found to be lowest for the chromium copper drums, with progressively higher temperatures in the aluminum/cast iron composite, nickel-aluminum bronze, and cast iron drums. Relative lining wear and coefficient of friction varied with the type of lining tested.
Technical Paper

A Comparative Study on Fatigue Damage of Caldie™ from Different Manufacturing Routes

2022-03-29
2022-01-0245
In automotive body manufacturing the dies for blanking/trimming/piercing are under most severe loading condition involving high contact stress at high impact loading and large number of cycles. With continuous increase in sheet metal strength, the trim die service life becomes a great concern for industries. In this study, competing trim die manufacturing routes were compared, including die raw materials produced by hot-working (wrought) vs. casting, edge-welding (as repaired condition) vs. bulk base metals (representing new tools), and the heat treatment method by induction hardening vs. furnace through-heating. CaldieTM, a Uddeholm trademarked grade was used as trim die material. The mechanical tests are performed using a WSU developed trimming simulator, with fatigue loading applied at cubic die specimen’s cutting edges through a tungsten carbide rod to accelerate the trim edge damage. The tests are periodically interrupted at specified cycles for measurement of die edge damage.
Technical Paper

A Comparative Study on Microstructures and Mechanical Properties of Al-GNPs Composites Fabricated by Casting Method

2019-10-11
2019-28-0139
This paper describes an investigation on microstructures as well as mechanical properties of pure aluminium graphene nano platelets (GNPs) metal matrix composites prepared via novel based stir casting technique combined with ultrasonic treatment. The proportion of graphene changes from 0.5 to 2.0 wt. % in aluminium with 99% purity. The investigations on composites revealed that Al with combination of 1.0 % graphene composite showcased enhanced mechanical properties with 48.49 % (~49%) increase in tensile strength and 34.53 % (~35%) increase in micro hardness compared to test results of composites produced by traditional stir casting technique. FESEM analysis was done to examine the surface morphology of produced composite and fracture surface of tested composites where as XRD analysis was to inspect the phase analysis of produced composites.
Technical Paper

A Comparative Study on the Performance of Ventilated Brake Discs Manufactured in Different Advanced Materials

2001-10-01
2001-01-3325
Two different aluminium alloy materials have been used to produce ventilated brake discs, on one hand, AS17G0.6 hypereutectic alloy and on the other hand, AS7G0.6 reinforced with 20% in wt. of SiC particles. The casting production technique used has been Low Pressure Casting (LPC) and some of the brake discs have been heat treated using a T6 treatment. Once the ventilated brake discs were produced and machined, they were tested in a dynamometer in order to compare the performance under service conditions of the aluminum alloy and grey cast iron (GCI) discs currently used in the market.
Journal Article

A Comparison of 25 High Speed Tire Disablements Involving Full and Partial Tread Separations

2013-04-08
2013-01-0776
Tire tread separation events, a category of tire disablements, can be sub-categorized into two main types of separations. These include full tread separations, in which the tread around the entire circumference of the tire separates from the tire carcass, and partial tread separations, in which a portion of the tread separates and the flap remains attached to the tire for an extended period of time. In either case, the tire can remain inflated or lose air. Relatively, there have been few partial tire tread separation tests presented in the literature compared to full tread separation tests. In this study, the results of 25 full and partial tire tread separation tests, conducted with a variety of vehicles at highway speeds, are reported. Cases in which the tire remains inflated and loses air pressure are both considered. The testing was performed on a straight section of road and primarily focused on rear tire disablements.
Technical Paper

A Comparison of Engine Oil Viscosity, Emulsion Formation, and Chemical Changes for M85 and Gasoline-Fueled Vehicles in Short-Trip Service

1992-10-01
922297
Accumulation of fuel, water, acids, insolubles, and metals in engine oil is documented and compared for variable-fueled (fuel containing up to 85 percent methanol) and gasoline-fueled vehicles in short-trip service. The oil temperature at which various contaminants are removed is noted. As a consequence of emulsion formation, the viscosity of the oil in the M85-fueled vehicles increased. Due to the presence of gasoline, the viscosity of the oil in the gasoline-fueled vehicles decreased. Equations were developed to explain both the viscosity reduction due to gasoline and the viscosity increase due to emulsion-forming contaminants (water and methanol).
Technical Paper

A Comparison of the Impact Characteristics of Several Magnesium Die Casting Alloys

1993-03-01
930417
Interest in ductile, tough magnesium alloys has been stimulated by designers seeking lightweight, efficient steering control structures. The simultaneous need for deformable, energy-absorbing components redirected metallurgists to consider the impact behavior of “high-ductility”, AM-series, magnesium alloys. This paper provides a comparison between the “workhorse” AZ91D magnesium alloy and the less-common, AM60B alloy. Specific application to a steering column bracket illustrates the development processes involved in selecting the appropriate alloy.
Technical Paper

A Composite Approach to Reducing Abrasive Wear

1983-09-12
831375
“Today, wearing parts are regularly subjected to abnormal loading conditions. They must be able to accept these conditions without failure. In continuous operations, unscheduled downtime greatly increases maintenance costs, not to mention the cost of lost production. White iron castings offer premium abrasion resistance for many of these applications, but are often not used due to the possibility of brittle failure and the difficulty of mechanical attachment. This paper discusses the properties and applications of a composite of martensitic white iron and mild steel. This laminate will accept medium to high impact without loss of service failure, and can be installed by mechanical means or with welded attachment.”
Technical Paper

A Computer-aided Production Planning System for Mass Customization of Non-rotational Parts

2004-03-08
2004-01-1248
This paper introduces a comprehensive system of production planning for mass customization of non-rotational parts. The combined features are defined based on the concept of part families. The process parameters are associated with the feature parameters so that a rapid production planning can be achieved for product design changes. Setup planning is carried out based on both the best practice knowledge in industry and the analysis based generation of setups. Manufacturing resource, fixture design, and tolerance issues are considered in the system. The cycle time estimation and standard documentation are included in the system.
Technical Paper

A Cost/Performance Comparison of Die Cast Zinc and Glass-Reinforced Thermoplastics

1972-02-01
720289
In an earlier paper, a series of comparison tests were described that verified the cost/performance advantage of die-cast zinc over five unreinforced, engineering thermoplastics in tension, flexure, creep, impact, and fatigue when compared under identical test procedures and specimen geometries as dictated by plastics industry standards. Additional tests showed the superiority of die-cast zinc over these same thermoplastics in regard to thread strength, dimensional stability, heat distortion, weathering, flammability, and chemical stress cracking. This paper reports on a continuation of these same series of test procedures where die-cast zinc is compared with six 40% glass-reinforced thermoplastics. Again the results continue to show the cost/performance superiority of die-cast zinc over the reinforced thermoplastics tested.
X