Refine Your Search

Topic

Search Results

Technical Paper

A Full-Cycle Multi-Zone Quasi-Dimensional Direct Injection Diesel Engine Model Based on a Conceptual Model Developed from Imaging Experiments

2017-03-28
2017-01-0537
A quasi-dimensional model for a direct injection diesel engine was developed based on experiments at Sandia National Laboratory. The Sandia researchers obtained images describing diesel spray evolution, spray mixing, premixed combustion, mixing controlled combustion, soot formation, and NOx formation. Dec [1] combined all of the available images to develop a conceptual diesel combustion model to describe diesel combustion from the start of injection up to the quasi-steady form of the jet. The end of injection behavior was left undescribed in this conceptual model because no clear image was available due to the chaotic behavior of diesel combustion. A conceptual end-of-injection diesel combustion behavior model was developed to capture diesel combustion throughout its life span. The compression, expansion, and gas exchange stages are modeled via zero-dimensional single zone calculations.
Technical Paper

A Piezoelectric Sensor Concept for Measuring Piston Wetting in DISI Engines

2005-10-24
2005-01-3873
A piezoelectric sensor to measure the mass of fuel that impacts the piston top during injection in a direct injection spark ignition (DISI) engine was developed. The sensor used a 3.18 cm (1.25-inch) long, 0.318 cm (0.125-inch) wide piezo bending motor. The principle of operation is based on the change in natural vibration frequency that occurs to the cantilever piezo beam due to a change in its mass caused by the presence of liquid fuel on its surface. An electrical impulse is used to set the piezo element in vibration after which the natural vibrational frequency is measured using a FFT analyzer. The concept was evaluated outside the engine and calibrated for the frequency shift as a function of the weight of liquid on the bending element. The change in the frequency was found to be approximately proportional to the liquid mass on the sensor. The piston top of the engine was modified to accommodate the sensor on its surface.
Technical Paper

Combustion Modeling in SI Engines with a Peninsula-Fractal Combustion Model

1996-02-01
960072
In premixed turbulent combustion models, two mechanisms have been used to explain the increase in the flame speed due to the turbulence. The newer explanation considers the full range of turbulence scales which wrinkle the flame front so as to increase the flame front area and, thus, the flame propagation speed. The fractal combustion model is an example of this concept. The older mechanism assumes that turbulence enables the penetration of unburned mixtures across the flame front via entrainment into the burned mixture zone. The entrainment combustion or eddy burning model is an example of this mechanism. The results of experimental studies of combustion regimes and the flame structures in SI engines has confirmed that most combustion takes place at the wrinkled flame front with additional combustion taking place in the form of flame fingers or peninsulas.
Technical Paper

Cycle-Resolved Measurements of Flame Kernel Growth and Motion Correlated with Combustion Duration

1990-02-01
900023
A recently developed spark plug equipped with fiber-optic flame-arrival detectors has been used to measure the motion and rate of growth of the early flame kernel. The cylinder pressure and gas velocity in the spark gap were measured simultaneously with the flame kernel measurements, permitting the data to be analyzed on a cycle-by-cycle basis to identify cause-and-effect correlations between the measured parameters. The data were obtained in a homogeneous-charge research engine that could be modified to produce three very different flow fields: (1) high swirl with high turbulence intensity, (2) tumble vortex with moderate turbulence intensity, and (3) negligible bulk motion with low turbulence intensity. The results presented show a moderate correlation between the combustion duration and the rate of growth of the flame kernel, but virtually no correlation with either the magnitude or direction of movement of the flame kernel away from the spark gap.
Technical Paper

Cycle-Resolved Measurements of Pre-Combustion Fuel Concentration Near the Spark Plug in a Gasoline SI Engine

1998-02-23
981053
An infrared fiber optic instrumented spark plug probe has been used to measure the fuel concentration in the vicinity of the spark gap in a port injected gasoline fueled SI engine. The probe measured the fuel concentration spatially averaged over a distance of 6.3 mm near the spark plug for consecutive firing cycles. The crank angle resolution of the measurements was 2.5 degrees, for a temporal resolution of between 0.9 and 0.3 ms depending on the engine speed. Quantitative measurements of the fuel concentration in the pre-ignition regions of the engine cycle were obtained. Qualitative results are reported for unburned hydrocarbons in the post-combustion regions. The measurements were made in a single cylinder research engine over a range of speed, load, and stoichiometric conditions. Strong mixture inhomogeneities were measured during the intake stroke and the inhomogeneities decreased through the compression stroke.
Technical Paper

Design Diversity of HEVs with Example Vehicles from HEV Competitions

1996-02-01
960736
Hybrid Electric Vehicles (HEVs) can be designed and operated to satisfy many different operational missions. The three most common HEV types differ with respect to component sizing and operational capabilities. However, HEV technology offers design opportunities beyond these three types. This paper presents a detailed HEV categorization process that can be used to describe unique HEV prototype designs entered in college and university-level HEV design competitions. We explored possible energy management strategies associated with designs that control the utilization of the two on-board energy sources and use the competition vehicles to illustrate various configurations and designs that affect the vehicle's capabilities. Experimental data is used to help describe the details of the power control strategies which determine how the engine and electric motor of HEV designs work together to provide motive power to the wheels.
Journal Article

Developing a Utility Factor for Battery Electric Vehicles

2013-04-08
2013-01-1474
As new advanced-technology vehicles are becoming more mainstream, analysts are studying their potential impact on petroleum use, carbon emissions, and smog emissions. Determining the potential impacts of widespread adoption requires testing and careful analysis. PHEVs possess unique operational characteristics that require evaluation in terms of actual in-use driving habits. SAE J2841, “Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using 2001 U.S. DOT National Household Travel Survey Data,” published by SAE in 2009 with a revision in 2010, is a guide to using DOT's National Household Travel Survey (NHTS) data to estimate the relative split between driving in charge-depleting (CD) mode and charge-sustaining (CS) mode for a particular PHEV with a given CD range. Without this method, direct comparisons of the merits of various vehicle designs (e.g., efficiency and battery size) cannot be made among PHEVs, or between PHEVs and other technologies.
Technical Paper

Diluents and Lean Mixture Combustion Modeling for SI Engines with a Quasi-Dimensional Model

1995-10-01
952382
Lean mixture combustion might be an important feature in the next generation of SI engines, while diluents (internal and external EGR) have already played a key role in the reductions of emissions and fuel consumption. Lean burn modeling is even more important for engine modeling tools which are sometimes used for new engine development. The effect of flame strain on flame speed is believed to be significant, especially under lean mixture conditions. Current quasi-dimensional engine models usually do not include flame strain effects and tend to predict burn rate which is too high under lean burn conditions. An attempt was made to model flame strain effects in quasi-dimensional SI engine models. The Ford model GESIM (stands for General Engine SIMulation) was used as the platform. A new strain rate model was developed with the Lewis number effect included.
Technical Paper

Direct Measurement of Powertrain Component Efficiencies for a Light-Duty Vehicle with a CVT Operating Over a Driving Cycle

2003-10-27
2003-01-3202
In order to determine the factors that affect fuel economy quantitatively, the power flows through the major powertrain components were measured during operation over transient cycles. The fuel consumption rate and torque and speed of the engine output and axle shafts were measured to assess the power flows in a vehicle with a CVT. The measured power flows were converted to energy loss for each component to get the efficiency. Tests were done at Phase 1 and Phase 3 of the FTP and for two different CVT shift modes. The measured energy distributions were compared with those from the ADVISOR simulation and to results from the PNGV study. For both the Hot 505 and the Cold 505, and for both shift modes, the major powertrain loss occurs in the engine, including or excluding standby losses. However, the efficiency of the drivetrain/transmission is important because it influences the efficiency of the engine.
Technical Paper

Effects of EGR, Swirl, and Cylinder Deactivation on Exhaust Temperatures of a Throttled Light-Duty Diesel Engine under Idle Conditions

2019-04-02
2019-01-0544
This study extends a previous study on the effects of intake throttling and post-injection on light-duty Diesel engine exhaust temperatures and emissions, and includes the effects of EGR, in-cylinder swirl air motion, and cylinder deactivation. The baseline injection strategy was adapted from a 2014 Chevrolet Cruze having an engine similar to the light-duty GM engine used for this study. While the engine was fixed to a motoring engine dynamometer, the dynamometer was not active for the study, as the engine was operated under idle conditions. The desired idle speed was controlled using a feedback loop in the control algorithm to vary the duration of the main injection event. Three methods were investigated. In the first method, the engine was operated fully warmed up, firing all four cylinders.
Technical Paper

Electronic Particulate Matter Sensor – Mechanisms and Application in a Modern Light-Duty Diesel Vehicle

2009-04-20
2009-01-0647
An electronic particulate matter sensor (EPMS) developed at the University of Texas was used to characterize exhaust gases from a single-cylinder diesel engine and a light-duty diesel vehicle. Measurements were made during transient tip-in events with multiple sensor configurations in the single-cylinder engine. The sensor was operated in two modes: one with the electric field energized, and the other with no electric field present. In each mode, different characteristic signals were produced in response to a tip-in event, highlighting the two primary mechanisms of sensor operation. The sensor responded to both the natural charge of the particulate matter (PM) emitted from the engine, and was also found to create a signal by charging neutral particles. The characteristics of the two mechanisms of operation are discussed as well as their implications on the placement and operation of the sensor.
Technical Paper

Evaluating the Effects of Restraint Systems on Four Wheel Drive Testing Methodologies: A Collaborative Effort between NVFEL and ANL

2009-04-20
2009-01-1522
Testing vehicles for emissions and fuel economy has traditionally been conducted with a single-axle chassis dynamometer. The 2006 SAE All Wheel Drive Symposium cited four wheel drive (4WD) and all wheel drive (AWD) sales as climbing from 20% toward 30% of a motor vehicle market share. With an increasing number of four wheel-drive vehicles being introduced to the market place, certification testing for emissions and fuel economy has been changed to allow both two wheel drive and four wheel drive testing [1]. As manufacturers plan to test these vehicles in this mode, test methods need to be developed to allow for these changes. This paper focuses on the tie down methods available for 4WD testing to determine possible effects of test methodologies on a traditional 4WD Vehicle and a hybrid vehicle.
Technical Paper

Fiber Optic Sensor for Crank Angle Resolved Measurements of Burned Gas Residual Fraction in the Cylinder of an SI Engine

2001-05-07
2001-01-1921
A fiber optic infrared spectroscopic sensor was developed to measure the crank angle resolved residual fraction of burned gas retained in the cylinder of a four-stroke SI engine. The sensor detected the attenuation of infrared radiation in the 4.3 μm infrared vibrational-rotational absorption band of CO2. The residual fraction remaining in the cylinder is proportional to the CO2 concentration. The sensor was tested in a single-cylinder CFR spark ignition engine fired on propane at a speed of 700 rpm. The sensor was located in one of two spark plug holes of the CFR engine. A pressure-transducer-type spark plug was used to record the cylinder pressure and initiate the spark. The temporal resolution of the measurements was 540 μs (equivalent to 2.3 crank angle degrees) and the spatial resolution was 6 mm. Measurements were made during the intake and compression stroke for several intake manifold pressures. The compression ratio of the engine was varied from 6.3 to 9.5.
Technical Paper

Fiber Optic Sensor for Time-Resolved Measurements of Exhaust Gas Recirculation in Engines

2000-10-16
2000-01-2865
A fiber optic infrared spectroscopic sensor has been developed to measure the time-resolved concentration of exhaust gas recirculated (EGR) into the intake manifold of an internal combustion engine. The sensor detects the attenuation of infrared radiation in the 4.3 μm infrared vibrational-rotational absorption band of CO2. The EGR mass fraction in the intake manifold is proportional to the CO2 concentration. The sensor was tested in a single-cylinder spark ignition engine fired on propane at a speed of 700 rpm. The sensor was located 10 cm upstream of the intake valve. The temporal resolution of the measurements was 700 μs (equivalent to 2.5 crank angle degrees) allowing the local EGR concentration throughout the cycle to be measured. Measurements were made with both real and simulated EGR. The EGR flows were introduced at various locations upstream of the probe.
Technical Paper

Fiber-Optic Instrumented Spark Plug for Measuring Early Flame Development in Spark Ignition Engines

1988-10-01
881638
An optical probe for measuring the motion and rate of growth of the early flame kernel in spark ignition engines is described. The probe consists of a standard spark plug with eight optical fibers installed in a ring at the base of the threaded region of the plug. The fibers collect the light emitted from the flame as it crosses the field of view of the fibers, and transmit the light to photomultiplier tubes. The time from ignition until detection of the flame is used to compute the average flame velocity in the direction of each fiber relative to the spark location. The real-time data acquisition system permits statistical analysis of cycle-by-cycle variations in the combustion rate. Because the probe was built using a standard 14 mm spark plug, it can be used in unmodified production automotive engines.
Technical Paper

Fuel-Spray/Charge-Motion Interaction within the Cylinder of a Direct-Injected, 4-Valve, SI Engine

1998-02-23
980155
The mixture preparation process was investigated in a direct-injected, 4-valve, SI engine under motored conditions. The interaction between the high-pressure fuel jet and the intake air-flow was observed. Laser-sheet droplet imaging was used to visualize the in-cylinder droplet distributions, and a single-component LDV system was used to measure in-cylinder velocities. The fuel spray was visualized with the engine motored at 1500 and 750 rpm, and with the engine stopped. It was observed that the shape of the fuel spray was distorted by the in-cylinder air motion generated by the intake air flow, and that this effect became more pronounced with increasing engine speed. Velocity measurements were made at five locations on the symmetry plane of the cylinder, with the engine motored at 750 rpm. Comparison of these measurements with, and without, injection revealed that the in-cylinder charge motion was significantly altered by the injection event.
Technical Paper

Further Development of an Electronic Particulate Matter Sensor and Its Application to Diesel Engine Transients

2008-04-14
2008-01-1065
This paper presents the latest developments in the design and performance of an electronic particulate matter (PM) sensor developed at The University of Texas at Austin (UT) and suitable, with further development, for applications in active engine control of PM emissions. The sensor detects the carbonaceous mass component of PM in the exhaust and has a time-resolution less than 20 (ms), allowing PM levels to be quantified for engine transients. Sample measurements made with the sensor in the exhaust of a single-cylinder light duty diesel engine are presented for both steady-state and transient operations: a steady-state correlation with gravimetric filter measurements is presented, and the sensor response to rapid increases in PM emission during engine transients is shown for several different tip-in (momentary increases in fuel delivery) conditions.
Technical Paper

Improved Passage Design for a Spark Plug Mounted Pressure Transducer

2007-04-16
2007-01-0652
Combustion chamber pressure measurement in engines via a passage is an old technique that is still widely used in engine research. This paper presents improved passage designs for an off-set electrode spark plug designed to accept a pressure transducer. The spark plug studied was the Champion model 304-063A. Two acoustic models were developed to compute the resonance characteristics. The new designs have a resonance frequency in a range higher than the fundamental frequency expected from knock so that the signal can be lowpass filtered to remove the resonance and not interfere with pressure signal components associated with combustion phenomena. Engine experiments verified the spark plug resonance behavior. For the baseline engine operating condition approximately 50 of 100 cycles had visible passage resonance in the measured pressure traces, at an average frequency of 8.03 kHz.
Technical Paper

In-Cylinder Fuel Transport During the First Cranking Cycles in a Port Injected 4-Valve Engine

1997-02-24
970043
Fuel transport was visualized within the cylinder of a port injected four-valve SI engine having a transparent cylinder liner. Measurements were made while motoring at 250 rpm to simulate cranking conditions prior to the first firing cycle, and at 750 rpm to examine the effects of engine speed. A production GM Quad-4 cylinder head was used, and the stock single-jet port fuel injector was used to inject indolene. A digital camera was used to capture back-lighted images of cylinder wall wetting for open and closed intake valve injection. In addition, two-dimensional planar imaging of Mie scattering from the indolene fuel droplets was used to characterize the fuel droplet distribution as a function of crank angle for open and closed intake valve injection. LDV was used to measure the droplet and air velocities near the intake valves during fuel induction. It was found that with open-valve injection a large fraction of the fuel impinged on the cylinder wall opposite the intake valves.
Technical Paper

In-Situ Mapping and Analysis of the Toyota Prius HEV Engine

2000-08-21
2000-01-3096
The Prius is a major achievement by Toyota: it is the first mass-produced HEV with the first available HEV-optimized engine. Argonne National Laboratory's Advanced Powertrain Test Facility has been testing the Prius for model validation and technology performance and assessment. A significant part of the Prius test program is focused on testing and mapping the engine. A short-length torque sensor was installed in the powertrain in-situ. The torque sensor data allow insight into vehicle operational strategy, engine utilization, engine efficiency, and specific emissions. This paper describes the design and process necessary to install a torque sensor in a vehicle and shows the high-fidelity data measured during chassis dynamometer testing. The engine was found to have a maximum thermodynamic efficiency of 36.4%. Emissions and catalyst efficiency maps were also produced.
X