Refine Your Search

Topic

Author

Search Results

Technical Paper

A Fractal-Based SI Engine Model: Comparisons of Predictions with Experimental Data

1991-02-01
910079
A quasidimensional engine simulation which uses the concepts of fractal geometry to model the effects of turbulence on flame propagation in a homogeneous charge SI engine has been developed. Heat transfer and blowby/crevice flow submodels are included in this code and the submodels chosen are found to be reasonable. The model predictions of cylinder pressure histories are then compared with experimental data over a range of loads, equivalence ratios, and engine speeds. The model is not adjusted in any manner to yield better agreement with the data, other than by tuning the simple turbulence model used so as to yield agreement with data for the nonreacting flow. However, current information about the flame wrinkling scales in an engine is inadequate. Therefore, predictions are made for three different assumptions about the flame wrinkling scales which span the range of physically possible scales.
Technical Paper

A New Ignitior for Large-Bore Natural Gas Engines - Railplug Design Improvement and Optimization

2005-04-11
2005-01-0249
It is a very challenging problem to reliably ignite extremely lean mixtures, especially for the low speed, high load conditions of large-bore natural gas engines. If these engines are to be use for the distributed power generation market, it will require operation with higher boost pressures and even leaner mixtures. Both place greater demands on the ignition system. The railplug is a very promising ignition system for lean burn natural gas engines with its high-energy deposition and high velocity plasma arc. It requires care to properly design railplugs for this new application, however. For these engines, in-cylinder pressure and mixture temperature are very high at the time of ignition due to the high boost pressure. Hot spots may exist on the electrodes of the ignitor, causing pre-ignition problems. A heat transfer model is proposed in this paper to aid the railplug design. The electrode temperature was measured in an operating natural gas engine.
Technical Paper

Analysis of Factors that Affect the Performance of Railplugs

2005-04-11
2005-01-0252
As natural gas engines are designed to operate leaner and with increased boost pressure, durability of the spark plugs becomes problematic. Among the various new ignition devices that have been considered to solve some of the problems facing spark plugs, railplugs appear to hold clear advantages in some areas. There are two types of railplugs: coaxial rail and parallel rail. This paper reports the results of an experimental study of various parameters that affect the performance of parallel railplugs. Their performance was quantified by the distance that the arc traveled along the rails from the initiation point. Travel along the rails is thought to be an important performance metric because rail-travel limits excessive local wear and produces a distributed ignition source which can potentially reduce mixture inhomogeneity induced ignition problems.
Technical Paper

Analysis of Performance Results from FutureTruck 2001

2002-03-04
2002-01-1209
The 2001 FutureTruck competition involved 15 universities from across North America that were invited to apply a wide range of advanced technologies to improve energy efficiency and reduce greenhouse gas impact while producing near-zero regulated exhaust emissions in a 2000 Chevrolet Suburban. The modified vehicles designated as FutureTrucks demonstrated improvements in greenhouse gas emissions, tailpipe emissions, and over-the-road fuel economy compared with the stock vehicle on which they were based. The technologies represented in the vehicles included ICE-engines and fuel cell hybrid electric vehicle propulsion systems, a range of conventional and alternative fuels, advanced exhaust emissions controls, and light weighting technologies.
Video

Beyond MPG: Characterizing and Conveying the Efficiency of Advanced Plug-In Vehicles 

2011-11-08
Research in plug in vehicles (PHEV and BEV) has of course been ongoing for decades, however now that these vehicles are finally being produced for a mass market an intense focus over the last few years has been given to proper evaluation techniques and standard information to effectively convey efficiency information to potential consumers. The first challenge is the development of suitable test procedures. Thanks to many contributions from SAE members, these test procedures have been developed for PHEVs (SAE J1711 now available) and are under development for BEVs (SAE J1634 available later this year). A bigger challenge, however, is taking the outputs of these test results and dealing with the issue of off-board electrical energy consumption in the context of decades-long consumer understanding of MPG as the chief figure of merit for vehicle efficiency.
Technical Paper

CNG Compositions in Texas and the Effects of Composition on Emissions, Fuel Economy, and Driveability of NGVs

1996-10-01
962097
A survey of the CNG compositions within NGV driving range of Houston was performed. It was found that the statistics for the Texas CNGs were very similar to those from a previous national survey Based upon the present survey results, two extremes of CNG composition were chosen for a study of the effects of composition on emissions, fuel economy, and driveability. Two other CNG compositions were also included to provide for comparisons with the recently completed Auto/Oil Air Quality Improvement Research Program (AQIRP) and to extend the AQIRP database. One of the vehicles used in the AQIRP study was also used in the present investigation. Correlations were investigated for the relationships between the CNG composition and tailpipe emissions, fuel economy, and driveability.
Technical Paper

Calculating Results and Performance Parameters for PHEVs

2009-04-20
2009-01-1328
As one of the U.S Department of Energy's (DOE's) vehicle systems benchmarking partners, Argonne National Laboratory (Argonne) has tested many plug-in hybrid electric vehicle (PHEV) conversions and purpose-built prototype vehicles. The procedures for testing follow draft SAE J1711 and California Air Resources Board (CARB) test concepts and calculation methods. This paper explains the testing procedures and calculates important parameters. It describes some parameters, such as cycle charge-depleting range, actual charge-depleting range, electric range fraction, equivalent all-electric range, and utility factor-weighted fuel economy.
Technical Paper

Characterization and Comparison of Two Hybrid Electric Vehicles (HEVs) - Honda Insight and Toyota Prius

2001-03-05
2001-01-1335
Two limited-production hybrid electric vehicles (HEVs) - a 1988 Japanese model Toyota Prius and a 2000 Honda Insight - were tested at Argonne National Laboratory to collect data from vehicle component and systems operation. The test data are used to analyze operation and efficiency and to help validate computer simulation models. Both HEVs have FTP fuel economy greater than 45 miles per gallon and also have attributes very similar to those of conventional gasoline vehicles, even though each HEV has a unique powertrain configuration and operation control strategy. The designs and characteristics of these vehicles are of interest because they represent production technology with all the compromises for production included. This paper will explore both designs, their control strategies, and under what conditions high fuel economy was achieved.
Technical Paper

Coastdown Coefficient Analysis of Heavy-Duty Vehicles and Application to the Examination of the Effects of Grade and Other Parameters on Fuel Consumption

2012-09-24
2012-01-2051
To perform coastdown tests on heavy-duty trucks, both long acceleration and coasting distances are required. It is very difficult to find long flat stretches of road to conduct these tests; for a Class 8 truck loaded to 80,000 lb, about 7 miles of road is needed to complete the coastdown tests. In the present study, a method for obtaining coastdown coefficients from data taken on a road of variable grade is presented. To this end, a computer code was written to provide a fast solution for the coastdown coefficients. Class 7 and Class 8 trucks were tested with three different weight configurations: empty, “cubed-out” (fully loaded but with a payload of moderate density), and “weighed-out” (loaded to the maximum permissible weight).
Technical Paper

Combustion Modeling in SI Engines with a Peninsula-Fractal Combustion Model

1996-02-01
960072
In premixed turbulent combustion models, two mechanisms have been used to explain the increase in the flame speed due to the turbulence. The newer explanation considers the full range of turbulence scales which wrinkle the flame front so as to increase the flame front area and, thus, the flame propagation speed. The fractal combustion model is an example of this concept. The older mechanism assumes that turbulence enables the penetration of unburned mixtures across the flame front via entrainment into the burned mixture zone. The entrainment combustion or eddy burning model is an example of this mechanism. The results of experimental studies of combustion regimes and the flame structures in SI engines has confirmed that most combustion takes place at the wrinkled flame front with additional combustion taking place in the form of flame fingers or peninsulas.
Technical Paper

Comparison of an On-Board, Real-Time Electronic PM Sensor with Laboratory Instruments Using a 2009 Heavy-Duty Diesel Vehicle

2011-04-12
2011-01-0627
EmiSense Technologies, LLC (www.emisense.com) is commercializing its electronic particulate matter (PM) sensor that is based on technology developed at the University of Texas at Austin (UT). To demonstrate the capability of this sensor for real-time PM measurements and on board diagnostics (OBD) for failure detection of diesel particle filters (DPF), independent measurements were performed to characterize the engine PM emissions and to compare with the PM sensor response. Computational fluid dynamics (CFD) modeling was performed to characterize the hydrodynamics of the sensor's housing and to develop an improved PM sensor housing with reproducible hydrodynamics and an internal baffle to minimize orientation effects. PM sensors with the improved housing were evaluated in the truck exhaust of a heavy duty (HD) diesel engine tested on-road and on a chassis dynamometer at the University of California, Riverside (UCR) using their Mobile Emissions Laboratory (MEL).
Technical Paper

Conversion of a 1999 Silverado to Dedicated E85 with Emphasis on Cold Start and Cold Driveability

2000-03-06
2000-01-0590
The University of Texas Ethanol Vehicle Challenge team focused upon cold start/driveability, fuel economy, and emissions reduction for our 1999 Ethanol Vehicle Challenge entry. We replaced or coated all fuel system components that were not ethanol compatible. We used the stock PCM for all control functions except control of a novel cold-start system our team designed. The primary modifications for improved emissions control involved ceramic coating of the exhaust manifolds, use of close-coupled ethanol-specific catalysts, increased EGR for the operating conditions of the five longest cruises on the FTP, and our cold-start system that eliminates the need to overfuel the engine at the beginning of the FTP. This EGR control scheme should also benefit urban fuel economy. Additionally, we eliminated EGR at high load to improve power density.
Technical Paper

Design Details of the Compression Ignition Rotating Liner Engine. Reducing Piston Assembly Friction and Ring/Liner Wear in Heavy-Duty Diesel Engines

2012-09-24
2012-01-1963
The Rotating Liner Engine (RLE) is an engine design concept where the cylinder liner rotates in order to reduce piston assembly friction and liner/ring wear. The reduction is achieved by the elimination of the mixed and boundary lubrication regimes that occur near TDC. Prior engines for aircraft developed during WW2 with partly rotating liners (Sleeve Valve Engines or SVE) have exhibited reduction of bore wear by factor of 10 for high BMEP operation, which supports the elimination of mixed lubrication near the TDC area via liner rotation. Our prior research on rotating liner engines experimentally proved that the boundary/mixed components near TDC are indeed eliminated, and a high friction reduction was quantified compared to a baseline engine. The added friction required to rotate the liner is hydrodynamic via a modest sliding speed, and is thus much smaller than the mixed and boundary friction that is eliminated.
Journal Article

Design of an On-Road PHEV Fuel Economy Testing Methodology with Built-In Utility Factor Distance Weighting

2012-04-16
2012-01-1194
As vehicle technology progresses to new levels of sophistication, so too, vehicle test methods must evolve. This is true for analytical testing in a laboratory and for on-road vehicle testing. Every year since 1993, the U.S. Department of Energy (DOE) and original equipment manufacturer (OEM) sponsors have organized a series of competitions featuring advanced hybrid electric vehicle (HEV) technology to develop and promote DOE goals in fuel savings and alternative fuel usage. The competition has evolved over many years and has included many alternative fuels feeding the prime mover (including hydrogen fuel cells). EcoCAR turned its focus to plug-in hybrid electric vehicles (PHEVs) and it was quickly realized that to keep using on-road testing methods to evaluate fuel and electricity consumption, a new method needed to be developed that would properly weight depleting operation with the sustaining operation, using the established Utility Factor (UF) method.
Technical Paper

Development of a Computationally Fast Equilibrium-Equivalent 4-Stroke SI Engine Model

1988-02-01
880130
A set of algebraic equations has been developed to replace the iterative thermochemical equilibrium subroutine in zero-dimensional and quasidimensional engine modeling codes. These equations allow calculation of the equilibrium composition given only the equivalence ratio and the fuel characteristics, thereby allowing the composition calculations to be performed external to the iterative main loop. This technique results in a decrease of the required computational time by up to a factor of 13, dependent upon the equivalence ratio and the fuel. The predictions of the equilibrium-equivalent code agree with those of a traditional equilibrium code within 2.5% for the four fuels examined (CH4, C3H8, C2H5OH, and i-C8H18) for compression ratios between 5 and 12:1, intake manifold pressures between 50 and 100 kPa, and equivalence ratios from 0.5 to 1.5. A technique for including constrained equilibrium to account for freezing of CO oxidation during the expansion stroke is also presented.
Technical Paper

Diluents and Lean Mixture Combustion Modeling for SI Engines with a Quasi-Dimensional Model

1995-10-01
952382
Lean mixture combustion might be an important feature in the next generation of SI engines, while diluents (internal and external EGR) have already played a key role in the reductions of emissions and fuel consumption. Lean burn modeling is even more important for engine modeling tools which are sometimes used for new engine development. The effect of flame strain on flame speed is believed to be significant, especially under lean mixture conditions. Current quasi-dimensional engine models usually do not include flame strain effects and tend to predict burn rate which is too high under lean burn conditions. An attempt was made to model flame strain effects in quasi-dimensional SI engine models. The Ford model GESIM (stands for General Engine SIMulation) was used as the platform. A new strain rate model was developed with the Lewis number effect included.
Technical Paper

Direct Measurement of Powertrain Component Efficiencies for a Light-Duty Vehicle with a CVT Operating Over a Driving Cycle

2003-10-27
2003-01-3202
In order to determine the factors that affect fuel economy quantitatively, the power flows through the major powertrain components were measured during operation over transient cycles. The fuel consumption rate and torque and speed of the engine output and axle shafts were measured to assess the power flows in a vehicle with a CVT. The measured power flows were converted to energy loss for each component to get the efficiency. Tests were done at Phase 1 and Phase 3 of the FTP and for two different CVT shift modes. The measured energy distributions were compared with those from the ADVISOR simulation and to results from the PNGV study. For both the Hot 505 and the Cold 505, and for both shift modes, the major powertrain loss occurs in the engine, including or excluding standby losses. However, the efficiency of the drivetrain/transmission is important because it influences the efficiency of the engine.
Technical Paper

Drive Cycle Fuel Consumption Variability of Plug-In Hybrid Electric Vehicles Due to Aggressive Driving

2009-04-20
2009-01-1335
Previous studies and on-road driving by consumers have shown that Hybrid Electric Vehicle fuel economy is very dependent on driver demand in both vehicle speed and vehicle acceleration [1]. The emerging technology of Plug-In Hybrid Vehicles (PHEV) may prove to also be more sensitivity to aggressive driver demand as compared to conventional internal combustion engine vehicles. This is due to the exceptional ability of the PHEV to minimize fuel consumption at mid to low power levels by the significant use of electric propulsion which enables engine downsizing. As vehicle speed and acceleration increase so does the power demand on the powertrain. The fuel consumption is directly affected by this increase in power demand level. To examine the fuel consumption impact of changing driver characteristics on PHEV’s, testing is conducted on two vehicles (parallel PHEV and power-split PHEV) on a four wheel chassis dynamometer at Argonne’s Advanced Powertrain Research Facility.
Technical Paper

Effects of Fuel Parameters on FTP Emissions of a 1998 Toyota with a Direct Injection Spark Ignition Engine

2000-06-19
2000-01-1907
The effects of fuel properties on the emissions of a production vehicle with a gasoline direct injection engine operating over the Federal Test Procedure (FTP) cycle were investigated. The vehicle used was a 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine. Engine-out and tailpipe FTP emissions for six fuels and a California Phase 2 RFG reference fuel are presented. Four of the test fuels were blended from refinery components to meet specified distillation profiles. The remaining test fuels were iso-octane and toluene, an iso-alkane and an aromatic with essentially the same boiling point (at atmospheric pressure) that is near the T50 point for the blended fuels. Statistically significant effects, at the 95% confidence level, of the fuels on tailpipe emissions were found. Correlations were sought between the properties of the five blends and the Emissions Indices for engine-out hydrocarbons and NOx and for tailpipe particulates.
Technical Paper

Effects of Fuel Volatility, Load, and Speed on HC Emissions Due to Piston Wetting

2001-05-07
2001-01-2024
Piston wetting can be isolated from the other sources of HC emissions from DISI engines by operating the engine predominantly on a gaseous fuel and using an injector probe to impact a small amount of liquid fuel on the piston top. This results in a marked increase in HC emissions. In a previous study, we used a variety of pure liquid hydrocarbon fuels to examine the influence of fuel volatility and structure on the HC emissions due to piston wetting. It was shown that the HC emissions correspond to the Leidenfrost effect: fuels with very low boiling points yield high HCs and those with a boiling point near or above the piston temperature produce much lower HCs. All of these prior tests of fuel effects were performed at a single operating condition: the Ford World Wide Mapping Point (WWMP). In the present study, the effects of load and engine speed are examined.
X