Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

An Experimental Evaluation of the Oil Fouling Effects of Two-Stroke Oxidation Catalysts

1998-09-14
982014
Washcoat sintering and substrate meltdown have traditionally been the principle deactivating mechanisms of catalysts fitted to two-stroke engines. The reduction of the excessively high HC and CO levels responsible for these effects has therefore been the focus of considerable research which has led to the introduction of direct in-cylinder fuel injection to some larger versions of this engine. However, much less attention has been paid to the effects of oil and its additives on the performance and durability of the two-stroke catalyst. The quantity of oil emitted to the exhaust system of the majority of two-stroke engines is much greater than in four-stroke engines of comparable output due to the total loss lubrication system employed. The fundamental design of the two-stroke also permits some of this oil to ‘short-circuit’ to the exhaust in a neat or unburned form.
Technical Paper

An Experimental and Predictive Evaluation of Unsteady Gas Flow through Automotive Catalyst Elements

2005-02-01
2005-01-3134
The incorporation of one-dimensional simulation codes within engine modelling applications has proved to be a useful tool in evaluating unsteady gas flow through elements in the exhaust system. This paper reports on an experimental and theoretical investigation into the behaviour of unsteady gas flow through catalyst substrate elements. A one-dimensional (1-D) catalyst model has been incorporated into a 1-D simulation code to predict this behaviour. Experimental data was acquired using a ‘single pulse’ test rig. Substrate samples were tested under ambient conditions in order to investigate a range of regimes experienced by the catalyst during operation. This allowed reflection and transmission characteristics to be quantified in relation to both geometric and physical properties of substrate elements.
Technical Paper

Catalyst Deactivation on a Two-Stroke Engine

1998-09-14
982015
With the legislative demands increasing on recreational vehicles and utility engined applications, the two-stroke engine is facing increasing pressure to meet these requirements. One method of achieving the required reduction is via the introduction of a catalytic converter. The catalytic converter not only has to deal with the characteristically higher CO and HC concentration, but also any oil which is added to lubricate the engine. In a conventional two-stroke engine with a total loss lubrication system, the oil is either scavenged straight out the exhaust port or is entrained, involved in combustion and is later exhausted. This oil can have a significant effect on the performance of the catalyst. To investigate the oiling effect, three catalytic converters were aged using a 400cm3 DI two-stroke engine. A finite level of oil was added to the inlet air of the engine to lubricate the internal workings. The oil flow rate is independent of the engine speed and load.
Technical Paper

Deactivation of Oxidation Catalysts by Oil-Derived Sulphur

2004-03-08
2004-01-1738
The most common mode of deactivation suffered by catalysts fitted to two-stroke engines has traditionally been thermal degradation, or even meltdown, of the washcoat and substrate. The high temperatures experienced by these catalysts are caused by excessively high concentrations of HC and CO in the exhaust gas which are, in turn, caused by a rich AFR and the loss of neat fuel to the exhaust during the scavenging period. The effects of catalyst poisoning due to additives in the oil is often regarded as a secondary, or even negligible, deactivating mechanism in two-stroke catalysts and has therefore received little attention. However, with the introduction of direct in-cylinder fuel injection to some larger versions of this engine, the quantities of HC escaping to the exhaust can be reduced to levels similar to those found on four-stroke gasoline engines.
Technical Paper

Factors Affecting Catalyst Efficiency a Theoretical and Investigative Treatise

1993-09-01
932397
This paper details the investigation of the properties of inlet gases and shows how they affect the flow patterns immediately in front of the catalyst and the subsequent loss of efficiency. A thorough analysis of the flow distribution at the inlet of the catalyst enabled the effective catalyst diameter to be calculated. Subsequent calculations were then carried out to determine the loss of catalyst function through flow maldistribution. Experimental work involved flowing engine proportioned amounts of air through canisters of a fixed geometric profile containing a catalyst. Inlet cones of angles 10°, 15° and 45° were flowed to estimate the effect of the cone design on the velocity distributions at the face of the catalyst. Simple geometric profiles were investigated to allow a thorough understanding of the mechanism of flow to be comprehended and its affect on catalyst conversion to be analysed.
Technical Paper

Pressure Loss Characteristics in Catalytic Converters

2003-09-16
2003-32-0061
A technique has been developed to study the axial static pressure profile through the channels of a 400 cells per square inch (cpsi) catalytic converter monolith. The shape of the profile proved different from the accepted laminar flow profile, although the flow conditions are clearly laminar within the channels of the converter. The fact that the inner surfaces of the channels are extremely rough, and that this roughness is highly irregular, is thought to have an effect on the developed pressure profile. The measured profile was compared against the pressure profiles predicted by the most popular models in the published literature. A two-point criterion was developed to distinguish among those models. It was observed that Shah's model [1]* for the pressure drop along a square duct is the most appropriate. Additional static pressure measurements were taken both before and after the catalyst element and used to calculate the entrance and exit total pressure loss coefficients.
Technical Paper

The Effects of the Catalytic Converter on Two-Stroke Engine Performance

1997-09-08
972741
The two-stroke engine, by its nature is very dependent on the unsteady gas dynamics within an exhaust system. This is demonstrated by the tuning effects on two-stroke engines, which have been well documented. In consideration of current emissions legislation, a two-stroke engine can be fitted with a catalytic converter for the outboard, utility or automotive markets. The catalytic substrate represents a major obstruction to the flow of exhaust gas, which hinders the progression of the main exhausted pulse, and in turn effects the scavenging of the cylinder and ultimately the performance of the engine. Within this investigation, a 400 cc direct injection two-stroke engine was used with various catalysts positioned at different distances from the exhaust manifold. Comparison tests were performed between a fully lit off catalyst and a non-operational bare substrate.
Technical Paper

The Potential of 50cc Four-Stroke Engines for Moped Applications

1998-09-14
982050
Due to increasingly stringent emissions legislation the four-stroke engine is beginning to replace the two-stroke engine for motorcycle and scooter applications over 50cc. However, because of its comparatively poor performance, the four-stroke unit is not replacing the two-stroke for moped applications which are restricted to 50cc. To meet forthcoming European legislation the two-stroke moped engine requires an exhaust catalyst which presents considerable durability problems when applied to this type of engine. This would not be the case with a four-stroke unit, so if its performance could be improved it would be an attractive alternative. This paper illustrates the difficulties facing four-stroke engines of this size, the improvements required, the benefits (and problems) of a multi-valve approach and possible means of improving performance.
X