Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Development and Application of a 1-Dimensional Model for a NOx Trap System

2006-10-16
2006-01-3445
A one-dimensional model of a NOx trap system was developed to describe NOx storage during the lean operation, and NOx release and subsequent reduction during the rich regeneration process. The development of a NOx trap model potentially enables the optimisation of catalyst volume, precious metal loading, substrate type and regeneration strategy for these complex systems. To develop a fundamental description of catalytic activity, experiments were conducted to investigate the key processes involved in isolation (as far as possible), using a Pt/Rh/BaO/Al2O3 model catalyst. A description of the storage capacity as a function of temperature was determined using NOx breakthrough curves and the storage portion of more dynamic lean-rich cycling experiments. NOx breakthrough curves were also used for determination of rate of NOx storage. Kinetics for NOx reduction, as well as CO and HC oxidation, were determined using steady state reactor experiments.
Technical Paper

Development and Validation of a Cu-Zeolite SCR Catalyst Model

2011-04-12
2011-01-1299
A one-dimensional numerical model for a Cu-zeolite SCR catalyst has been developed. The model is based on kinetics developed from laboratory microreactor data for the various NH₃-NOX reactions, as well as for NH₃ oxidation. The kinetic scheme used is discussed and evidence for it presented. The model is capable of predicting the conversion of NO and NO₂, NH₃ slip and the formation of N₂O, as well as effects associated with NH₃ storage and desorption. To obtain a good prediction of catalyst temperature during cold start tests, it was found necessary to include storage and desorption of H₂O in the model; storage of H₂O is associated with a sizable exotherm and the subsequent desorption of this water produces a correspondingly large endotherm.
Journal Article

Development and Validation of a Pt-Pd Diesel Oxidation Catalyst Model

2012-04-16
2012-01-1286
The Diesel Oxidation Catalyst (DOC) is an important technology for the removal of CO and hydrocarbons (HC) from the exhaust of diesel engines, as well as for generating exotherms for active regeneration, and for producing NO₂ used by downstream components. This paper describes the development of a one-dimensional numerical model for a Pt-Pd DOC for use in designing aftertreatment systems. The model is based on kinetics developed from laboratory microreactor data. The model is a significant advance over previous DOC models we have developed. A much larger experimental matrix was used enabling the kinetics and inhibition effects to be much better defined. The experiments included rich conditions enabling the model to be used in NOX trap systems, where the exhaust becomes rich during regeneration. Reduction of NO₂ to NO by CO and HC has been included in the model.
Technical Paper

Experimental and Modelling Study of Cold Start Effects on a Cu-Zeolite NH3 Selective Catalytic Reduction Catalyst

2015-09-01
2015-01-2011
Microreactor, engine bench tests and modelling studies have been carried out to understand the influence of cold start (low temperatures) on the performance of NH3/urea-SCR automotive exhaust aftertreatment systems. Water storage experiments using Simultaneous Thermal Analysis (STA) coupled with numerical modelling demonstrated that the exo/endo-therms associated with water adsorption and desorption at temperatures below 150°C strongly influence the catalyst temperature. Appreciable amounts of NO and NO2 could be stored on the catalyst during reactor or engine testing in the absence of any NH3 (blank tests). Modelling studies at different inlet NO2/NOx ratios demonstrated some of the influences of these surface adsorbed species on the performance of the SCR system during cold start.
Journal Article

Factors Affecting Three-Way Catalyst Light-Off: A Simulation Study

2014-04-01
2014-01-1564
Achieving early catalyst light-off is crucial if stringent emissions standards are to be met; if light-off is late, the emissions limit could be exceeded even before the catalyst starts to work. This paper presents a detailed simulation study of the factors affecting the light-off of a TWC. Simulation is not just faster and cheaper than vehicle testing, it also enables more insight into the factors affecting catalyst performance to be obtained. For example, changing the substrate (cell density and wall thickness) affects the rates of heat and mass transport, as well as the thermal mass of the catalyst. In a vehicle test, all three factors are changed at once, but with a simulation each of these factors can implemented one at time to enable the relative importance of these factors to be determined.
Technical Paper

Modeling of Non-Road Diesel Exhaust Aftertreatment Systems: Diesel Oxidation and Selective Catalytic Reduction Catalysts

2010-10-25
2010-01-2092
The aftertreatment challenge in the non-road market is making the same system work and fit not just in one machine, but in hundreds of different machines, some of which can be used for many different purposes. This huge diversity of applications and the relatively small unit numbers for each application, coupled with the rapid introduction of new standards and the very high performance needed from the engines and machines, requires a sophisticated approach to product development. Furthermore, as emissions requirements become ever more stringent, designing a system to meet the legislation subject to packaging and cost constraints becomes progressively more difficult. This is further exacerbated by increasing system complexity, where more than one technology may be required to control all the legislated pollutants and/or an active control strategy is involved. Also a very high degree of component integration is required.
Journal Article

Modeling the Emissions Control Performance of a Catalyzed Diesel Particulate Filter (CDPF) System for Light Duty Diesel Applications

2009-04-20
2009-01-1266
The use of catalyzed diesel particulate filter (CDPF) systems in light duty diesel (LDD) vehicles is becoming increasingly common. The primary functions of the system are to remove carbon monoxide (CO) and hydrocarbons (HC) from the vehicle exhaust stream, while simultaneously reducing the level of particulate matter (PM) emissions to ambient background levels. These systems can comprise either a separate diesel oxidation catalyst (DOC) and a downstream CDPF, or a single unit CDPF with the DOC functions incorporated within the CDPF. The single CDPF unit provides higher regeneration efficiency as it is located nearer to the engine and also cost benefits, as only a single unit is required compared to the alternative separate DOC and CDPF arrangement. A model describing the performance of the single unit CDPF for emissions control has been developed, with particular emphasis on achieving predictions of the CO and HC emissions over transient vehicle drive cycles.
Journal Article

Removal of Hydrocarbons and Particulate Matter Using a Vanadia Selective Catalytic Reduction Catalyst: An Experimental and Modeling Study

2013-04-08
2013-01-1071
The use of vanadia selective catalytic reduction (V-SCR) catalysts for NOX reduction from diesel engine exhaust is well known. These catalysts are also active for hydrocarbon (HC) and particulate matter (PM) oxidation. This dual functionality (oxidation and reduction) of V-SCR catalysts can help certain applications achieve the legislative limits with an improved margin. In this work, NOX reduction, HC and CO oxidation over V-SCR were studied independently and simultaneously in microreactor tests. The effect of various parameters (HC speciation, concentration, ANR, and NO₂/NOX ratio) was investigated and the data was used to develop a kinetic model. Oxidation of CO, C₃H₆, and n-C₁₀H₂₂ is first order in CO/HC, while C₇H₈ oxidation is less than first order in C₇H₈. All these reactions were zero order in O₂. Oxidation activity decreased in order: C₇H₈ ≻ n-C₁₀H₂₂ ≻ C₃H₆ ≻ CO. HC oxidation was inhibited by NH₃.
Journal Article

The Effect of Pt:Pd Ratio on Light-Duty Diesel Oxidation Catalyst Performance: An Experimental and Modelling Study

2015-04-14
2015-01-1053
This paper presents a two-part study on the effect of Pt:Pd ratio (at a constant total Pt+Pd loading of 120 g ft−3) on the catalytic performance of a Diesel Oxidation Catalyst (DOC) intended for light-duty applications, covering ratios across the full range from 100% Pd to 100% Pt. (Work on a heavy-duty DOC is presented in SAE 2015-01-1052). The first part of this paper presents a reactor study on the effect of Pt:Pd ratio on the catalytic activity of key reactions occurring individually over the DOC, including the oxidation of CO, C3H6, n-C10H22, CH4 and NO. For some reactions, activity increases continuously with Pt content (oxidation of n-C10H22 and NO); in contrast the activity for CH4 oxidation increases with decreasing Pt content (increasing Pd content), while CO and C3H6 oxidation exhibit more complicated dependencies. The second part presents the development of a one-dimensional model capable of predicting the effect of Pt:Pd ratio on DOC performance.
X