Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Application of Electric Vehicle System Design to Grand Prix EV Kart

2011-04-12
2011-01-0353
The renewed interest in electric and hybrid-electric vehicles has been prompted by the drastic rise in oil prices in 2008 and launch of new initiatives by the Federal Government. One of the key issues is to promote the incorporation of electric drivetrain in vehicles at all levels and particularly with emphasis on educational activities to prepare the workforce needed for the near future. Purdue University has been conducting a Grand Prix for over 50 years with Gas-powered Karts. In April 2010, an annual event was initiated to hold an EV Grand Prix where 17 EV Karts participated in the competition. Four of the participating teams comprised of Purdue students in a new graduate course for EV design and fabrication. Using the basic framework of the gas-powered Kart, an electric version was developed as a part of this course. Other participants were also provided with the guidelines and design parameters developed for the course and competition.
Technical Paper

Designing a High Voltage Energy Storage System for a Parallel-Through-The-Road Plug-In Hybrid Electric Vehicle

2013-04-08
2013-01-0557
A parallel-through-the-road (PTTR) plug-in hybrid electric vehicle is being created by modifying a 2013 Chevrolet Malibu. This is being accomplished by replacing the stock 2.4L gasoline engine which powers the front wheels of the vehicle with a 1.7L diesel engine and by placing a high voltage electric motor in the rear of the vehicle to power the rear wheels. In order to meet the high voltage needs of the vehicle created by the PTTR hybrid architecture, an energy storage system (ESS) will need to be created. This paper explains considerations, such as location, structure integrity, and cooling, which are needed in order to properly design an ESS.
Technical Paper

Development of a SIL, HIL and Vehicle Test-Bench for Model-Based Design and Validation of Hybrid Powertrain Control Strategies

2014-04-01
2014-01-1906
Hybrid powertrains with multiple sources of power have generated new control challenges in the automotive industry. Purdue University's participation in EcoCAR 2, an Advanced Vehicle Technology Competition managed by the Argonne National Laboratories and sponsored by GM and DOE, has provided an exciting opportunity to create a comprehensive test-bench for the development and validation of advanced hybrid powertrain control strategies. As one of 15 competing university teams, the Purdue EcoMakers are re-engineering a donated 2013 Chevrolet Malibu into a plug-in parallel- through-the-road hybrid-electric vehicle, to reduce its environmental impact without compromising performance, safety or consumer acceptability. This paper describes the Purdue team's control development process for the EcoCAR 2 competition.
Technical Paper

Hybrid Electric Vehicle Powertrain Controller Development Using Hardware in the Loop Simulation

2013-04-08
2013-01-0156
It is a time and cost consuming way to physically develop Hybrid Electric Vehicle (HEV) supervisor controller due to the increasing complexity of powertrain system. This study aims to investigate the HEV supervisor controller development process using dSPACE midsize Hardware in the Loop simulation system (HIL) for HEV powertrain control. The prototyping controller was developed on basis of MircoAutoBox II, and an HIL test bench was built on midsize HIL machine for the purpose of verification. The feasibility and capability of HIL were attested by the prototyping control strategy and fault modes simulation. The proposed approach was demonstrated its effectiveness and applicability to HEV supervisor controller development.
Technical Paper

Key Outcomes of Year One of EcoCAR 2: Plugging in to the Future

2013-04-08
2013-01-0554
EcoCAR 2: Plugging In to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 28 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles.
Technical Paper

Overview of Hybrid Electric Vehicle Safety and the Potential for Hydrogen Ignition by Static Electricity

2000-04-02
2000-01-1538
Hybrid Electric vehicles (HEVs) and Fuel Cell vehicles (FCVs) are showing promise of success as a commercial product as they are being developed by the industry. It is only prudent to closely consider safety issues for both post-crash and failure (non-crash) scenarios. A review of most relevant technologies being considered for HEVs was performed to identify potential hazard conditions and interactions between systems and sub-systems within these vehicles. Energy storage, propulsion systems and fuel storage were examined for different configurations of such vehicles. It is anticipated that plastics, composites and other nonconductive materials will be used more widely in future cars. This can result in an increased propensity to generate substantial static charge levels. Furthermore, the presence of high-voltage and high-current lines, batteries, electric motors and other components not present in conventional vehicles with alternative fuels or hydrogen justifies this examination.
X