Refine Your Search

Topic

Search Results

Standard

AIR CONDITIONING, HELICOPTER, GENERAL REQUIREMENTS FOR

1970-10-26
HISTORICAL
ARP292B
These recommendations are written to cover the general requirements of helicopter air conditioning and are sub-divided as follows: (1) Air Conditioning System - Dealing with the general design aspects. (2) Air Conditioning Equipment - Design requirements for satisfactory system function and performance. (3) Air Conditioning System Design Requirements -General information for use of those concerned in meeting requirements contained herein.
Standard

AIRCRAFT CABIN PRESSURIZATION CONTROL CRITERIA

1993-06-01
HISTORICAL
ARP1270
These recommendations cover the basic criteria for the design of aircraft cabin pressurization control systems as follows: (1) To ensure aircraft safety. (2) Physiology and limits which govern maximum permissible pressure time relations as related to aircraft passenger comfort. (3) General pressurization control system performance requirements designed to satisfy (2). (4) Technical considerations relevant to satisfying (3).
Standard

AIRPLANE CABIN PRESSURIZATION

1948-11-01
HISTORICAL
ARP367
These recommendations cover the general field of airplane cabin supercharging equipment and are subdivided as follows:
Standard

AIRPLANE CABIN PRESSURIZATION

1959-11-15
HISTORICAL
ARP367A
These recommendations cover the general field of airplane cabin pressurization equipment and are subdivided as follows: GENERAL REQUIREMENTS FOR PRESSURIZED AIRPLANES CABIN AIR COMPRESSORS CABIN PRESSURE REGULATING EQUIPMENT ENGINE BLEED AIR DUCT SYSTEMS CABIN PRESSURE DUCTING SYSTEM
Standard

AIRPLANE CABIN PRESSURIZATION

1960-03-01
HISTORICAL
ARP367B
These recommendations cover the general field of airplane cabin pressurization equipment and are subdivided as follows: GENERAL REQUIREMENTS FOR PRESSURIZED AIRPLANES CABIN AIR COMPRESSORS CABIN PRESSURE REGULATING EQUIPMENT ENGINE BLEED AIR DUCT SYSTEMS CABIN PRESSURE DUCTING SYSTEM
Standard

Aerospace Pressurization System Design

2011-07-25
CURRENT
AIR1168/7A
The pressurization system design considerations presented in this AIR deal with human physiological requirements, characteristics of pressurization air sources, methods of controlling cabin pressure, cabin leakage control, leakage calculation methods, and methods of emergency cabin pressure release.
Standard

Aerospace Pressurization System Design

2004-06-22
HISTORICAL
AIR1168/7
The pressurization system design considerations presented in this AIR deal with human physiological requirements, characteristics of pressurization air sources, methods of controlling cabin pressure, cabin leakage control, leakage calculation methods, and methods of emergency cabin pressure release.
Standard

Air Conditioning Systems for Subsonic Airplanes

2018-08-23
HISTORICAL
ARP85F
This SAE Aerospace Recommended Practice (ARP) contains guidelines and recommendations for subsonic airplane air conditioning systems and components, including requirements, design philosophy, testing and ambient conditions. The airplane air conditioning system comprises that arrangement of equipment, controls and indicators that supply and distribute air to the occupied compartments for ventilation, pressurization, and temperature and moisture control. The principal features of the system are: a A supply of outside air with independent control valve(s). b A means for heating c A means for cooling (air or vapor cycle units and heat exchangers) d A means for removing excess moisture from the air supply e A ventilation subsystem f A temperature control subsystem g A pressure control subsystem Other system components for treating cabin air such as filtration and humidification are included, as are the ancillary functions of equipment cooling and cargo compartment conditioning.
Standard

Air Quality for Commercial Aircraft Cabin Particulate Contaminants

2018-10-17
WIP
AIR4766/1A
This SAE Aerospace Information Report (AIR) covers airbone particulate contaminants that may be present in commercial aircraft cabin air during operation. Discussions cover sources of contaminants, methods of control and design recommendations. Air quality, ventilation requirements and standards are also discussed.
Standard

Air Quality for Commercial Aircraft Cabin Particulate Contaminants

2018-08-23
CURRENT
AIR4766/1
This SAE Aerospace Information Report (AIR) covers airbone particulate contaminants that may be present in commercial aircraft cabin air during operation. Discussions cover sources of contaminants, methods of control and design recommendations. Air quality, ventilation requirements and standards are also discussed.
Standard

Airborne Chemicals in Aircraft Cabins

2021-06-22
CURRENT
AIR4766/2A
This SAE Aerospace Information Report (AIR) provides information on aircraft cabin air quality, including: Origins of chemical airborne contaminants during routine operating and failure conditions. Exposure control measures, including design, maintenance, and worker training/education. This AIR does not deal with airflow requirements.
Standard

Aircraft Cabin Pressurization Control Criteria

2006-06-28
HISTORICAL
ARP1270A
These recommendations cover the basic criteria for the design of aircraft cabin pressurization control systems as follows: (1) To ensure aircraft safety. (2) Physiology and limits which govern maximum permissible pressure time relations as related to aircraft passenger comfort. (3) General pressurization control system performance requirements designed to satisfy (2). (4) Technical considerations relevant to satisfying (3).
Standard

Aircraft Turbine Engine Pneumatic Component Contaminated Air Endurance Test

2012-12-06
HISTORICAL
ARP4014
This recommended practice describes a method of conducting an endurance test using contaminated air when the applicable specification requires non-recirculation of the contaminants. The objective of the test is to determine the resistance of the engine mounted components to wear or damage caused by the contaminated air. The method described herein calls for non-recirculation of the contaminants and is intended to provide a uniform distribution of the contaminant at the inlet to the Unit Under Test (UUT). The UUT may require the use of a hydraulic fluid for actuation of components within the test unit. Contamination of this test fluid is not part of this recommended practice, however, if required by applicable test specification, refer to MAP 749A.
Standard

Aircraft Turbine Engine Pneumatic Component Contaminated Air Endurance Test

2017-09-05
CURRENT
ARP4014A
This SAE Aerospace Recommended Practice (ARP) describes a method of conducting an endurance test using contaminated air when the applicable specification requires non-recirculation of the contaminants. The objective of the test is to determine the resistance of the engine mounted components to wear or damage caused by the contaminated air. The method described herein calls for non-recirculation of the contaminants and is intended to provide a uniform distribution of the contaminant at the inlet to the Unit Under Test (UUT). The UUT may require the use of a hydraulic fluid for actuation of components within the test unit. Contamination of the test hydraulic fluid is not part of this recommended practice. If contaminated hydraulic fluid is required by the applicable test specification, refer to MAP749.
Standard

COOLING OF MODERN AIRBORNE ELECTRONIC EQUIPMENT

1991-10-01
HISTORICAL
AIR1277
This document contains information on the cooling of modern airborne electronics, emphasizing the use of a heat exchange surface which separates coolant and component. It supplements the information contained in AIR 64 for the draw through method and in AIR 728 for high Mach Number aircraft. Report contents include basic methods, characteristics of coolants, application inside and outside of the "black box" use of thermostatic controls to improve reliability and system design. Characteristics of typical cooling components are treated sufficiently to permit selection and to estimate size and weight. While emphasis is placed herein on equipment cooling, section 9 dealing with thermal control of the environment, reminds the reader that some equipment will require heating for start up from a cold condition or as a means to control temperature within narrow limits (e.g. in a crystal oven). Property data and constants are also tabulated.
Standard

ENVIRONMENTAL CONTROL SYSTEM CONTAMINATION

1981-01-30
HISTORICAL
AIR1539
This publication will be limited to a discussion of liquid and particulate contaminants which enter the aircraft through the environmental control system (ECS). Gaseous contaminants such as ozone, fuel vapors, sulphates, etc., are not covered in this AIR. It will cover all contamination sources which interface with ECS, and the effects of this contamination on equipment. Methods of control will be limited to the equipment and interfacing ducting which normally falls within the responsiblity of the ECS designer.
X