Refine Your Search

Search Results

Technical Paper

Ambient Air Entrainment into Transient Hydrogen Jet and its Flame Jet

1997-02-24
970894
It is necessary to understand the entrainment process of ambient air into diesel sprays for the combustion process. This study focused on the entrainment process of non-combusting and combusting hydrogen jets instead of evaporated fuel sprays because of ease with measurement for fundamental research. Spatial and temporal changes of the air entrainment into the jets were obtained using flow visualization technique. The experimental results showed that the total air mass entrained into the flame jet is nearly equal to that into the cold jet. The rate of entrainment per unit area of the flame jet is smaller than that in the cold jet. When a transient jet is separated into side and front parts, the rate of air mass entrained from the front part of the jet decreases with time while the rate into the side of the jet per unit area is almost the same. The total air mass entrained into the jet can be approximately explained by the momentum theory.
Technical Paper

Attainment of High Thermal Efficiency and Near-zero Emissions by Optimizing Injected Spray Configuration in Direct Injection Hydrogen Engines

2019-12-19
2019-01-2306
The authors have previously proposed a plume ignition and combustion concept (i.e., PCC combustion), in which a hydrogen fuel is directly injected to the combustion chamber in the latter half of compression stroke and forms a richer mixture plume. By combusting the plume, both cooling losses and NOx formation are reduced. In this study, thermal efficiency was substantially improved and NOx formation was reduced with PCC combustion by optimizing such characteristics as direction and diameter of the jets in combination with combustion of lean mixture. Output power declined due to the lean mixture, however, was recovered by supercharging while keeping NOx emissions at the same level. Thermal efficiency was further improved by slightly re-optimizing the jet conditions.
Technical Paper

Combustion Diagnostics Using Time-Series Analysis of Radical Emissions in a Practical Engine

2015-11-17
2015-32-0748
The objective of this study is to investigate the initial flame propagation characteristics of turbulent flame in an engine cylinder through time-series analysis of radical emissions. A spark plug with optical fiber was developed in this study. The plug sensor is M12 type that makes it possible to mount in practical engine. The spark plug sensor can detect radical emissions in time-resolved spectra through time-series spectroscopic measurement. In this spectra, some kinds of radical emissions such as OH*(306nm), CH*(431nm) and C2*(517nm) based on principle of chemiluminescence are observed. In this study, the spark plug sensor was applied to both compression-expansion machine (CEM) and practical engine. As a result of CEM with bottom viewed high-speed camera, three kinds of spectra could be detected.
Technical Paper

Effect of Bio-Gas Contents on SI Combustion for a Co-Generation Engine

2015-09-01
2015-01-1946
Bio-gas as an internal combustion (I.C.) engine fuel has many advantages such as cheaper fuel cost, low emission levels and especially the neutral recirculation loop of carbon dioxide, which is one of the principal factors in global warming. In this study, positive potentialities of bio-gas were investigated using a micro co-generation engine. The mixing ratio of methane (CH4) and carbon dioxide (CO2) was changed to simulate various types of bio-gases. Intake air and fuel flow rates were controlled to change the equivalence ratio. The engine load condition could be changed with the electric output power used. Base on the result, the higher CO2 content rate slowed down the engine speed in the same load condition and the combustion speed generally decreased under the same load condition with maintaining the engine speed. However thermal efficiency increased with lean burn conditions and NOX emission decreased with higher CO2 mixing rates.
Technical Paper

Effect of EGR on Combustion and Exhaust Emissions in Supercharged Dual-Fuel Natural Gas Engine Ignited with Diesel Fuel

2009-06-15
2009-01-1832
The combustion and exhaust emissions characteristics of a supercharged dual-fuel natural gas engine with a single cylinder were analyzed. We focused on EGR (Exhaust Gas Recirculation) to achieve higher thermal efficiency and lower exhaust emissions. The combustion of diesel fuel (gas oil) as ignition sources was visualized using a high-speed video camera from the bottom of a quartz piston. The luminous intensity and flame decreased as the EGR rate increased. Furthermore, the ignition delay became longer due to the EGR. Characteristics of the combustion and exhaust emissions were investigated with changing EGR rates under supercharged conditions. The indicated mean effective pressure and thermal efficiency decreased with increasing EGR rate. In addition, NOx emissions decreased due to the EGR. In this study two-stage combustion was observed.
Technical Paper

Effect of Hydrogen Concentration on Engine Performance, Exhaust Emissions and Operation Range of PREMIER Combustion in a Dual Fuel Gas Engine Using Methane-Hydrogen Mixtures

2015-09-01
2015-01-1792
A single cylinder, supercharged dual fuel gas engine with micro-pilot fuel injection is operated using methane only and methane-hydrogen mixtures. Methane only experiments were performed at various equivalence ratios and equivalence ratio of 0.56 is decided as the optimum operating condition based on engine performance, exhaust emissions and operation stability. Methane-hydrogen experiments were performed at equivalence ratio of 0.56 and 2.6 kJ/cycle energy supply rate. Results show that indicated mean effective pressure is maintained regardless of hydrogen content of the gaseous fuel while thermal efficiency is improved and presence of hydrogen reduces cyclic variations. Increasing the fraction of hydrogen in the fuel mixture replaces hydrocarbon fuels and reduces carbon monoxide and hydrocarbon emissions.
Technical Paper

Effects of EGR and Early Injection of Diesel Fuel on Combustion Characteristics and Exhaust Emissions in a Methane Dual Fuel Engine

2002-10-21
2002-01-2723
A dual fuel engine fueled with methane from an inlet port and ignited with diesel fuel was prepared. This study focuses on the effects of early injection and exhaust gas recirculation (EGR) on the characteristics of combustion and exhaust emissions. The injection timing was changed between TDC and 50 degrees before the TDC. In the early injection timing, smoke was never seen and hydrocarbons were smaller compared with those at the normal injection timing. However, the combustion becomes too early to obtain an appropriate torque when the equivalence ratio increases. Then, moderate EGR was very effective to force the combustion to retard with lower NOx, higher thermal efficiency and almost the same hydrocarbons and carbon monoxide. The engine operated even under the condition of stoichiometric mixture.
Technical Paper

Fuel Breakup Near Nozzle Exit of High-Pressure Swirl Injector for Gasoline Direct Injection Engine

2004-03-08
2004-01-0542
Experimental investigations of fuel breakup very close to nozzle of practical high-pressure swirl injector, which is used in gasoline direct injection (GDI) engine, were carried out. In GDI engines, fuel is directly injected into cylinder therefore the spray characteristics and mixture formation are of primary importance. In this research, visualizations of primary spray formation process were demonstrated using a high-speed video camera (maximum speed: 1Mfps) with a long-distance microscope. Initial state and development of the spray were discussed under the different injection pressure condition. During the injection period, the length and thickness of the liquid sheet, which is produced from the nozzle exit, were measured using Ar-ion laser sheet and high-speed camera. Primary spray structure and behavior of liquid sheet, especially surface wave of liquid sheet, at nozzle exit were discussed using obtained images.
Technical Paper

Fundamental Study on Combustion Diagnostics Using a Spark Plug as Ion Probe

2000-10-16
2000-01-2828
In order to investigate the relation between ion current and combustion characteristics, the ion current signal from a spark plug as an ion probe, pressure history and flame development were measured in a homogeneous propane-air mixture in closed combustion chambers. The flame propagation was measured by Schlieren photography technique. When negative bias is applied to the central electrode of the spark plug, the ion current flows only due to an early flame kernel existing near the spark plug. When positive bias is applied to the central electrode, the ion current flows from the central electrode to the combustion chamber wall and to the ground electrode. Consequently, the ion current is dominated by the contact area between the flame and the combustion chamber wall. The appearance period of ion-current is related to the combustion duration. This method was applied to the combustion analysis of the spark ignition engine.
Technical Paper

Gas Temperature Measurement in a DME-HCCI Engine using Heterodyne Interferometry with Spark-Plug-in Fiber-Optic Sensor

2007-07-23
2007-01-1848
Non-intrusive measurement of transient unburned gas temperatures was developed with a fiber-optic heterodyne interferometry system. Using the value of the Gladstone-Dale constant for DME gas and combustion pressure we can calculate the in-cylinder temperature inside unburned and burned region. In this experimental study, it was performed to set up a fiber-optic heterodyne interferometry technique to measure the temperature before and behind the combustion region in a DME-HCCI engine. At first, measured temperature was almost the same as the temperature history assuming that the process that changes of the unburned and the burned are polytropic. In addition, we measured the temperature after combustion which of condition was burned gas with DME-HCCI combustion. The developed heterodyne interferometry used the spark-plug-in fiber-optic sensor has a good feasibility to measure the unburned and burned temperature history.
Journal Article

High-Pressure Hydrogen Jet and Combustion Characteristics in a Direct-Injection Hydrogen Engine

2011-08-30
2011-01-2003
Hydrogen spark-ignition (SI) engines based on direct-injection (DI) promise significant advantages in terms of thermal efficiency and power output, as well as a means of overcoming problems related to knocking, backfiring, and pre-ignition. In a DI hydrogen engine, the fuel/air mixture is formed by injecting a jet of hydrogen into the air inside the combustion chamber. An Ar-ion laser beam was used as a light source to visualize the hydrogen jet in a constant-volume chamber. This allowed us to study the structure of the jet in addition to other physical processes resulting from hydrogen gas injection. Combustion experiments were conducted in a single-cylinder SI optical research engine equipped with a DI system to detect the early kernel growth assisted by the spark, as well as flame propagation. Various equivalence ratios and fuel injection timings were analyzed to identify the effects on combustion.
Technical Paper

Homogeneous Charge Compression Ignition Combustion with Dimethyl Ether - Spectrum Analysis of Chemiluminescence

2003-05-19
2003-01-1828
Homogeneous Charge Compression Ignition (HCCI) combustion with dimethyl ether has been carried out in a single cylinder engine with a transparent piston. The engine was operated at 800 rpm with a wide-open throttle. The intake-premixed mixture was preheated with an electric heater to promote auto-ignition. HCCI combustion with dimethyl ether indicates multi-stage heat releases. Investigations were conducted with visualization of combustion in the cylinder and detailed and temporal spectroscopic measurements using spectrometer. In order to understand reaction mechanism of auto-ignition and combustion mechanism in HCCI engine, spectrum analysis of chemiluminescence was carried out.
Technical Paper

Hydrogen Combustion and Exhaust Emissions Ignited with Diesel Oil in a Dual Fuel Engine

2001-09-24
2001-01-3503
Hydrogen is expected to be one of the most prominent fuels in the near future for solving greenhouse problem, protecting environment and saving petroleum. In this study, a dual fuel engine of hydrogen and diesel oil was investigated. Hydrogen was inducted in a intake port with air and diesel oil was injected into the cylinder. The injection timing was changed over extremely wide range. When the injection timing of diesel fuel into the cylinder is advanced, the diesel oil is well mixed with hydrogen-air mixture and the initial combustion becomes mild. NOx emissions decrease because of lean premixed combustion without the region of high temperature of burned gas. When hydrogen is mixed with inlet air, emissions of HC, CO and CO2 decrease without exhausting smoke while brake thermal efficiency is slightly smaller than that in ordinary diesel combustion.
Technical Paper

In-Situ Fuel Concentration Measurement Near Spark Plug by 3.392 μm Infrared Absorption Method-Application to a Port Injected Lean-Burn Engine

2004-03-08
2004-01-1353
In this study, a spark plug sensor for in-situ fuel concentration measurement was applied to a port injected lean-burn engine. Laser infrared absorption method was employed and a 3.392 μm He-Ne laser that coincides with the absorption line of hydrocarbons was used as a light source. In this engine, the secondary valve lift height of intake system was controlled to obtain appropriate swirl and tumble flow in order to achieve lean-burn with the characteristics of intake flow. For such in-cylinder stratified mixture distribution, the fuel concentration near the spark plug is very important factor that affects the combustion characteristics. Therefore, the mixture formation process near the spark plug was investigated with changing fuel injection timing. Under the intake stroke, the timing that fuel passed through near the spark plug depended largely on the fuel injection timing.
Technical Paper

In-Situ Fuel Concentration Measurement near Spark Plug by 3.392 mm Infrared Absorption Method - Pressure and Temperature Dependence of the Gasoline Molar Absorption Coefficient

2006-04-03
2006-01-0182
This paper describes the development and application of a spark plug sensor using a 3.392 μm infrared absorption technique to quantify the instantaneous gasoline concentration near the spark plug. We developed an in situ laser infrared absorption method using a spark plug sensor and a 3.392 μm He-Ne laser as the light source; this wavelength coincides with the absorption line of hydrocarbons. First, we established a database of the molar absorption coefficients of premium gasoline at different pressures and temperatures, and determined that the coefficient decreased with increasing pressure above atmospheric pressure. We then demonstrated a procedure for measuring the gasoline concentration accurately using the infrared absorption technique. The history of the molar absorption coefficient of premium gasoline during the experiment was obtained from the established database using measured in-cylinder pressures and temperatures estimated by taking the residual gas into consideration.
Technical Paper

In-situ Residual Gas Concentration Measurement near a Spark Plug in a Motorcycle SI Engine

2007-10-30
2007-32-0049
This paper describes the development and application of a spark plug sensor using an infrared absorption technique to quantify the instantaneous residual gas concentration near the spark plug. The residual gas fraction inside engine cylinder is assumed to be proportional to CO2 concentration. The relationship between CO2 concentration and absorption strength of CO2 was determined for various pressures and temperatures in advance using a constant volume vessel with electric heating system. The spark plug sensor for in-situ CO2 concentration measurement was applied to a compression-expansion engine and also to a port injected motorcycle SI engine. It was possible to qualify the CO2 concentration inside residual gas during the compression stroke using the developed optical system with new spark plug sensor in compression-expansion machine.
Technical Paper

In-situ Unburned Gas Temperature Measurement in a Spark Ignition Engine Using Laser Interferometry

2005-04-11
2005-01-0646
A heterodyne interferometry system with a fiber-optic sensor was developed to measure the temperature history of unburned gas in a spark-ignition engine. A polarization-preserving fiber and metal mirror were used as the fiber-optic sensor to deliver the test beam to and from the measurement region. This fiber-optic sensor can be assembled in an engine cylinder head without a lot of improvements of an actual engine. Adjustment system in the sensor was revised to face the distributed index lens with metal mirror. Before the flame arrived at the developed fiber-optic sensor, measured temperature was almost same with the temperature history after the spark, assuming that the process that changes the unburned gas is adiabatic. In situ unburned gas temperature measurements before knocking in a commercially produced SI engine can be carried out using developed fiber-optic heterodyne interferometry system.
Technical Paper

Ion Current During the Exhaust Process Under the Idling Condition in a Spark Ignition Engine

2005-10-24
2005-01-3872
Recently, in order to warm up the catalyst temperature rapidly, the retard ignition management has been developed. However, the excess retard of ignition causes the combustion instability and misfire. In this case, the ion sensor has been used for detecting the combustion quality for the late burned cycle under the idling condition. Several researchers have focused on the potential of ion-current measurement for the retard ignition management. However, the interpretation of ion-current during the exhaust process under the idling condition is not clear. In this study the source of ion-current for the late burned cycle during the exhaust process is focused. In order to measure the flame propagation process in the cylinder and the exhaust pipe, the single-cylinder test engine was used instead of production engine. Several ion probes were mounted on the cylinder head gasket, the piston head and the exhaust pipe for detecting the flame front.
Technical Paper

Measurement of Flame Propagation Characteristics in an SI Engine Using Micro-Local Chemiluminescence Technique

2005-04-11
2005-01-0645
A small Cassegrain optics sensor was developed to measure local chemiluminescence spectra and the local chemiluminescence intensities of OH*, CH*, and C2* in a four-stroke spark-ignition (SI) engine in order to investigate the propagation characteristics of the turbulent premixed flame. The small Cassegrain optics sensor was an M5 type that could be installed in place of a pressure transducer. The measurements could be used to estimate the flame propagation speed, burning zone thickness, and local air/fuel (A/F) ratio for each cycle. The specifications of the small Cassegrain optics sensor were the same as those used for previous engine measurements. In this paper, measurements were made of several A/F ratios using gasoline to fuel the model engine. The performances of two Cassegrain optics sensors were compared to demonstrate the advantages of the new small sensor by measuring the local chemiluminescence intensities of a turbulent premixed flame in the model engine.
Technical Paper

Mixing Process of Direct Injection Hydrogen Jet in a Constant Volume Vessel by Using Spark-Induced Breakdown Spectroscopy

2013-10-14
2013-01-2526
Hydrogen spark-ignition (SI) engines based on direct-injection (DI) have been investigated because of their potential for high thermal efficiency and solving the problems related to knocking, backfiring, and pre-ignition. Wide range flammability limits in hydrogen engine enable smooth engine operation for a very lean mixture with low NOX. However, a too lean mixture may increase ignition delay and causes severe cyclic variations. There is a possibility that the turbulence occurred during injection of fuel surround the spark plug in the combustion chamber is major contributor to this phenomenon. To overcome this problem, a better understanding of the spark discharge and spark ignition during transient hydrogen jet is necessary. Therefore, it is very important to study an effect of local equivalence ratio and behavior of spark discharge in SI engine. This paper describes a mixing process of hydrogen jet using spark-induced breakdown spectroscopy (SIBS) in a constant volume vessel.
X