Refine Your Search

Topic

Search Results

Technical Paper

A U.S. Perspective of Plug-in Hybrids and an Example of Sizing Study, Prototype Development and Validation of Hybridized FC-NEV with Bi-directional Grid Inter-connect for Sustainable Local Transportation

2006-09-14
2006-01-3001
There is increasing interest in the use of alternative fuels for transportation, due to the increasing cost of petroleum based fuels. One possible alternative to the use of petroleum for transportation is to use electric grid power. This paper explores a possible design solution based on a plug-in fuel cell hybrid. A scaled down version of FC-HEV that is applicable to this concept, has been implemented as a proof of concept with fast prototyping toolkits, including a 32 bit micro processor, Matlab/Simulink software and an embedded system development kit. The resulting prototype vehicle demonstrated a high gasoline equivalent MPG as well as a successful functionality of micro grid power generation.
Technical Paper

AFR Control on a Single Cylinder Engine Using the Ionization Current

1998-02-23
980203
Over the years numerous researchers have suggested that the ionization current signal carries within it combustion relevant information. The possibility of using this signal for diagnostics and control provides motivation for continued research in this area. To be able to use the ion current signal for feedback control a reliable estimate of some combustion related parameter is necessary and therein lies the difficulty. Given the nature of the ion current signal this is not a trivial task. Fei An et al. [1] employed PCA for feature extraction and then used these feature vectors to design a neural network based classifier for the estimation of air to fuel ratio (AFR). Although the classifier predicted AFR with sufficient reliability, a major draw back was that the ion current signals used for prediction were averaged signals thus precluding a cycle to cycle estimate of AFR.
Technical Paper

Air-Fuel Ratio Control for a High Performance Engine using Throttle Angle Information

1999-03-01
1999-01-1169
This paper presents the development of a model-based air/fuel ratio controller for a high performance engine that uses, in addition to other usual signals, the throttle angle to enable predictive air mass flow rate estimation. The objective of the paper is to evaluate the possibility to achieve a finer air/fuel ratio control during transients that involve sudden variations in the physical conditions inside the intake manifold, due, for example, to fast throttle opening or closing actions. The air mass flow rate toward the engine cylinders undertakes strong variation in such transients, and its correct estimation becomes critical mainly because of the time lag between its evaluation and the instant when the air actually enters the cylinders.
Technical Paper

An 1800 HP, Street Legal Corvette: An Introduction to the AWD Electrically-Variable Transmission

2005-04-11
2005-01-1169
New vehicle technologies open up a vast number of new options for the designer, removing traditional constraints. Though hybrid powertrains have thus far been implemented chiefly to improve the fuel economy of already economical passenger cars, hybrid technology may have even more to offer in a performance vehicle. In the year when the C6 Corvette and two large GM hybrid projects have been unveiled, a new case study looks to combine these ideas and explore the performance limits for the next generation high performance sports car. Through an innovative transmission concept and thoughtful packaging, the next generation Corvette could enhance a 600 HP spark-ignited V-8 (supercharged LS2) with 1200 HP from electric machines, and still meet current emission standards. Such immense tractive power, however, would be useless without an intelligent means of delivering this power to the wheels.
Technical Paper

Application of Model-Based Design Techniques for the Control Development and Optimization of a Hybrid-Electric Vehicle

2009-04-20
2009-01-0143
Model-based design is a collection of practices in which a system model is at the center of the development process, from requirements definition and system design to implementation and testing. This approach provides a number of benefits such as reducing development time and cost, improving product quality, and generating a more reliable final product through the use of computer models for system verification and testing. Model-based design is particularly useful in automotive control applications where ease of calibration and reliability are critical parameters. A novel application of the model-based design approach is demonstrated by The Ohio State University (OSU) student team as part of the Challenge X advanced vehicle development competition. In 2008, the team participated in the final year of the competition with a highly refined hybrid-electric vehicle (HEV) that uses a through-the-road parallel architecture.
Technical Paper

Applications of Precise Crankshaft Position Measurements for Engine Testing, Control and Diagnosis

1989-02-01
890885
This paper presents several applications of a precise, moderate sampling rate measurement of the crankshaft angular position of a reciprocating IC engine. It is shown that the measurement can be made with a relatively inexpensive noncontacting sensor. Given sufficient precision and sampling rate, the various applications include: crankshaft reference position measurements for ignition timing (gasoline fueled engines), or injector timing (for electronically controlled diesel engines); crankshaft angular speed and acceleration measurements for estimating instantaneous indicated torque, and for diagnosing engine malfunctions. The torque estimate is potentially useful for engine control, to improve engine performance with respect to reducing cycle to cycle and cylinder to cylinder nonuniformity, and with respect to fuel economy.
Technical Paper

Crankshaft Position Measurement with Applications to Ignition Timing, Diagnostics and Performance Measurement

1987-10-01
871914
This paper introduces a high accuracy method of measuring crankshaft angular position of an I-C engine. The method uses a sensor which couples magnetically to the starter ring gear. There are many automotive applications of this measurement of crankshaft angular position including ignition timing reference, engine performance measurement and certain diagnostic functions. The present paper disusses only the ignition timing application. Engine performance measurements are reported in refs. (1,2,3). The diagnostic application is discussed in refs. (4-5). The passage of a starter ring gear tooth past the sensor axis causes a pulse to be generated in the sensor output. The waveform of this sensor voltage is independent of engine angular speed (including zero speed). However, this waveform is a function of gear tooth profile and is consequently influenced by gear wear. The present method uses a finite state machine to process the sensor output signal.
Journal Article

Design and Validation of a Control-Oriented Model of a Diesel Engine with Two-Stage Turbocharger

2009-09-13
2009-24-0122
Two-stage turbochargers are a recent solution to improve engine performance. The large flexibility of these systems, able to operate in different modes, can determine a reduction of the turbo-lag phenomenon and improve the engine tuning. However, the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization to maximize the benefits of this technology. In addition, the design and calibration of the control system is particularly complex. The transitioning between single stage and two-stage operations poses further control issues. In this scenario a model-based approach could be a convenient and effective solution to investigate optimization, calibration and control issues, provided the developed models retain high accuracy, limited calibration effort and the ability to run in real time.
Technical Paper

Detection of Partial Misfire in IC Engines Using a Measurement of Crankshaft Angular Velocity

1995-02-01
951070
In recent years considerable interest has been placed on the detection of engine misfire. As part of the California Air Resources Board on-board diagnostics regulations for 1994 model year vehicles, misfire should be monitored continuously by the engine diagnostic system. It is expected that the next generation of on-board diagnostics regulations will demand monitoring of partial misfire as well. Several solutions to the misfire detection problem have been proposed and demonstrated for the detection of complete misfires. However, the performance of these methods in the presence of partial misfire is not altogether clear. The aim of this paper is to evaluate the performance of various misfire detection indices, all based on a measurement of crankshaft angular velocity, in the presence of partial misfire. The proposed algorithms are compared to a standard based on a measurement of indicated pressure.
Technical Paper

Engine Control Using Torque Estimation

2001-03-05
2001-01-0995
In recent years, the increasing interest and requirements for improved engine diagnostics and control has led to the implementation of several different sensing and signal processing technologies. In order to optimize the performance and emission of an engine, detailed and specified knowledge of the combustion process inside the engine cylinder is required. In that sense, the torque generated by each combustion event in an IC engine is one of the most important variables related to the combustion process and engine performance. This paper introduces torque estimation techniques in the real-time basis for engine control applications using the measurement of crankshaft speed variation. The torque estimation scheme presented in this paper consists of two entirely different approaches, “Stochastic Analysis” and “Frequency Analysis”.
Technical Paper

Engine and Load Torque Estimation with Application to Electronic Throttle Control

1998-02-23
980795
Electronic throttle control is increasingly being considered as a viable alternative to conventional air management systems in modern spark-ignition engines. In such a scheme, driver throttle commands are interpreted by the powertrain control module together with many other inputs; rather than directly commanding throttle position, the driver is now simply requesting torque - a request that needs to be appropriately interpreted by the control module. Engine management under these conditions will require optimal control of the engine torque required by the various vehicle subsystems, ranging from HVAC, to electrical and hydraulic accessories, to the vehicle itself. In this context, the real-time estimation of engine and load torque can play a very important role, especially if this estimation can be performed using the same signals already available to the powertrain control module.
Technical Paper

Estimate of IC Engine Torque from Measurement of Crankshaft Angular Position

1993-09-01
932410
Crankshaft angular position measurements are fundamental to all modern automotive engines. These measurements are required to control fuel injection timing as well as ignition timing. However, many other functions can be performed from such measurements through the use of advanced signal processing. These additional functions are essentially diagnostic in nature although there is potential for substitution of primary fuel and ignition control functions. This paper illustrates the application of crankshaft angular position measurement to the estimation of individual cylinder indicated and/or brake torque in IC engines from measurement of crankshaft position/velocity.
Technical Paper

Failure Detection Algorithms Applied to Control System Design for Improved Diagnostics and Reliability

1988-02-01
880726
This paper presents the application of detection filters to the diagnosis of sensor and actuator failures in automotive control systems. The detection filter is the embodiment of a model-based failure detection and isolation (FDI) methodology, which utilizes analytical redundancy within a dynamical system (e.g., engine/controller) to isolate the cause and location of abnormal behavior (i.e., failures). The FDI methodology has been used, among other applications, in the aerospace industry for fault diagnosis of inertial navigation systems and flight controllers. This paper presents the philosophy and essential features of FDI theory, and describes the practical application of the method to the diagnosis of faults in the throttle position sensor in an electronically controlled IC engine. The paper also discusses the incorporation of FDI systems in the design process of a control strategy, with the aim of increasing reliability by embedding diagnostic features within the control strategy.
Technical Paper

Fast Transforms for Rapid Isolation of Misfiring Cylinders

1987-10-01
871915
This paper presents a method for the isolation of misfiring cylinders in an internal combustion engine. The method is based on the measurement of the extrema of engine angular velocity. It has been shown that a number of indices can be derived from such a measurement, to provide an indication of engine performance degradation. In this study, an onboard microprocessor-based instrument samples the extrema of the engine velocity waveform in real time, generating an N or 2N vector representing each engine cycle, where N is the number of cylinders. The data is processed by matrix transformations which are designed to isolate specific faults and their intensity. The transforms are constructed in such a way as to yield a nonzero output only when a certain fault is encountered. The system is capable of detecting individual or multiple cylinder misfires, both complete and partial. Experimental verification has been carried out in a passenger vehicle.
Technical Paper

High Performance Fuel Cell Sedan

2004-03-08
2004-01-1003
New vehicle technologies open up a vast number of new options for the designer, removing traditional constraints. Some recent conceptual designs, such as GM's Hy-wire, have recognized this and offered innovative new architectures. Unfortunately, many other new technology concept cars do not exploit the freedoms of the new technologies, hampering themselves with traditional design cues developed for conventional powertrains. This paper will present the conceptual design of a high-power, high-speed fuel cell luxury sedan. One of the main motivations of this case study was to explore what could happen when a vehicle was designed from the ground up as a fuel cell vehicle, optimized at the overall system level as well as at the individual component level. The paper will discuss innovations in vehicle architecture and novel concepts for the electrical transmission, fuel cell system and electromagnetic suspension.
Technical Paper

Improved Knock Detection by Advanced Signal Processing

1995-02-01
950845
Engine knock has been recognized as a major problem limiting the development of fuel efficient spark-ignition engines. Detection methods employed in current knock control systems for spark ignition engines use a measurement of engine block vibration tuned to one or more resonance frequencies to extract knock-related information from the engine structural vibration. A major problem in the detection of knock (especially at higher engine speed) in commercial engines is the isolation of the desired signal from the contributions of the components other than those associated with the phenomenon under investigation. This is generally referred to as background noise. It is known that the engine knock resonance frequencies vary due to changes in combustion chamber volume and temperature during the expansion phase. Therefore, we propose an improved knock detection method using joint time-frequency analysis of engine block vibration and pressure signals.
Technical Paper

Misfire Detection in a High-Performance Engine by the Principal Component Analysis Approach

1996-02-01
960622
The aim of this paper is to present the application of some signal processing and statistical analysis methods to the problem of detecting and isolating misfire occurrences in a twelve-cylinder high-performance engine. The method employed in this work is based on a measurement of engine angular velocity, processed in the frequency domain to extract a number of spectral components that are shown to be strongly affected by misfire events. These spectral components are then subject to a procedure known as Principal Components Analysis, in which the principal features of the angular speed waveform are extracted to generate individual cylinder misfire signatures. A clustering method is then implemented to permit the isolation of the cylinder responsible for the misfire. The paper briefly reviews the signal analysis method and presents experimental results supporting the validity of the approach.
Journal Article

Model Based Engine Control Development and Hardware-in-the-Loop Testing for the EcoCAR Advanced Vehicle Competition

2011-04-12
2011-01-1297
When developing a new engine control strategy, some of the important issues are cost, resource minimization, and quality improvement. This paper outlines how a model based approach was used to develop an engine control strategy for an Extended Range Electric Vehicle (EREV). The outlined approach allowed the development team to minimize the required number of experiments and to complete much of the control development and calibration before implementing the control strategy in the vehicle. It will be shown how models of different fidelity, from map-based models, to mean value models, to 1-D gas dynamics models were generated and used to develop the engine control system. The application of real time capable models for Hardware-in-the-Loop testing will also be shown.
Technical Paper

Model Based Fault Diagnosis for Engine under Speed Control

2007-04-16
2007-01-0775
An appropriate fault diagnosis and Isolation (FDI) strategy is very useful to prevent system failure. In this paper, a model-based fault diagnosis strategy is developed for an internal combustion engine (ICE) under speed control. Engine throttle fault and the manifold pressure sensor fault are detected and isolated. A nonlinear observer based residual generation approach is proposed. Manifold pressure and throttle are observed. Fault codes are designed with redundancy to prevent bit error. Performance of fault diagnosis strategy has been evaluated with simulations.
X