Refine Your Search

Topic

Search Results

Technical Paper

3-D LDV Measurement of In-Cylinder Air Flow in a 3.5L Four-Valve SI Engine

1995-02-01
950648
In-cylinder flows in a motored four-valve SI engine were examined by simultaneous three-component LDV measurement. The purpose of this study was to develop better physical understanding of in-cylinder flows and quantitative methods which correlate in-cylinder flows to engine performance. This study is believed to be the first simultaneous three-component LDV measurement of the air flow over a planar section of a four-valve piston-cylinder assembly. Special attention is paid to the tumble formation process, three-dimensional turbulent kinetic energy, and measurement of the tumble ratio. The influence of the induction system and the piston geometry are believed to have a significant effect on the in-cylinder flow characteristics. Using LDV measurement, the flows in two different piston top geometries were examined. One axial plane was selected to observe the effect of piston top geometries on the flow field in the combustion chamber.
Technical Paper

A Demonstration of Simultaneous Infrared and Visible Imaging Techniques with Pressure Data in an Optically Accessible Diesel Engine Operating at Part Load with High EGR

2011-04-12
2011-01-1395
This work presents a method for simultaneously capturing visible and infrared images along with pressure data in an optical Diesel engine based on the International 4.5L VT275 engine. This paper seeks to illustrate the merits of each imaging technique for visualizing both in-cylinder fuel spray and combustion. The engine was operated under a part load, high simulated exhaust gas recirculation operating condition. Experiments examining fuel spray were conducted in nitrogen. Overlays of simultaneously acquired infrared and visible images are presented to illustrate the differences in imaging between the two techniques. It is seen that the infrared images spatially describe the fuel spray, especially fuel vapors, and the fuel mixing process better than the high-speed visible images.
Technical Paper

A High Speed Flow Visualization Study of Fuel Spray Pattern Effect on Mixture Formation in a Low Pressure Direct Injection Gasoline Engine

2007-04-16
2007-01-1411
In developing a direct injection gasoline engine, the in-cylinder fuel air mixing is key to good performance and emissions. High speed visualization in an optically accessible single cylinder engine for direct injection gasoline engine applications is an effective tool to reveal the fuel spray pattern effect on mixture formation The fuel injectors in this study employ the unique multi-hole turbulence nozzles in a PFI-like (Port Fuel Injection) fuel system architecture specifically developed as a Low Pressure Direct Injection (LPDI) fuel injection system. In this study, three injector sprays with a narrow 40° spray angle, a 60°spray angle with 5°offset angle, and a wide 80° spray angle with 10° offset angle were evaluated. Image processing algorithms were developed to analyze the nature of in-cylinder fuel-air mixing and the extent of fuel spray impingement on the cylinder wall.
Technical Paper

A Study of Fuel Impingement Analysis on In-Cylinder Surfaces in a Direct-Injection Spark-Ignition Engine with Gasoline and Ethanol-Gasoline Blended Fuels

2010-10-25
2010-01-2153
An experimental study is performed to investigate the fuel impingement on cylinder walls and piston top inside a direct-injection spark-ignition engine with optical access to the cylinder. Three different fuels, namely, E85, E50 and gasoline are used in this work. E85 represents a blend of 85 percent ethanol and 15 percent gasoline by volume. Experiments are performed at different load conditions with the engine speeds of 1500 and 2000 rpm. Two types of fuel injectors are used; (i) High-pressure production injector with fuel pressures of 5 and 10 MPa, and (ii) Low-pressure production-intent injector with fuel pressure of 3 MPa. In addition, the effects of split injection are also presented and compared with the similar cases of single injection by maintaining the same amount of fuel for the stoichiometric condition. Novel image processing algorithms are developed to analyze the fuel impingement quantitatively on cylinder walls and piston top inside the engine cylinder.
Technical Paper

An Evaluation of Turbulent Kinetic Energy for the In-Cylinder Flow of a Four-Valve 3.5L SI Engine Using 3-D LDV Measurements

1997-02-24
970793
A better understanding of turbulent kinetic energy is important for improvement of fuel-air mixing, which can lead to lower emissions and reduced fuel consumption. An in-cylinder flow study was conducted using 1548 Laser Doppler Velocimetry (LDV) measurements inside one cylinder of a 3.5L four-valve engine. The measurement method, which simultaneously collects three-dimensional velocity data through a quartz cylinder, allowed a volumetric evaluation of turbulent kinetic energy (TKE) inside an automotive engine. The results were animated on a UNIX workstation, using a 3D wireframe model. The data visualization software allowed the computation of TKE isosurfaces, and identified regions of higher turbulence within the cylinder. The mean velocity fields created complex flow patterns with symmetries about the center plane between the two intake valves. High levels of TKE were found in regions of high shear flow, attributed to the collisions of intake flows.
Technical Paper

An Experimental Study of In-Cylinder Air Flow in a 3.5L Four-Valve SI Engine by High Speed Flow Visualization and Two-Component LDV Measurement

1993-03-01
930478
In-cylinder flows in four-valve SI engines were examined by high frame rate flow visualization and two-component LDV measurement. It is believed that the tumble and swirl motion generated during intake breaks down into small-scale turbulence later in the cycle. The exact nature of this relationship is not well known. However, control of the turbulence offers control of the combustion process. To develop a better physical understanding of the in-cylinder flow, the effects of the cylinder head intake port configuration and the piston geometry were examined. For the present study, a 3.5L, four-valve engine was modified to be mounted on an AVL single cylinder research engine type 520. A quartz cylinder was fabricated for optical access to the in-cylinder flow. Piston rings were replaced by Rulon-LD rings. A Rulon-LD ring is advantageous for the optical access as it requires no lubrication.
Technical Paper

Analysis of Variations in Fuel Spray, Combustion, and Soot Production in an Optical Diesel Engine Operating Under High Simulated Exhaust Gas Recirculation Operating Conditions

2016-04-05
2016-01-0727
In-cylinder visualization experiments were completed using an International VT275-based optical DI Diesel engine operating under high simulated exhaust gas recirculation combustion conditions. Experiments were run at four load conditions to examine variations in fuel spray, combustion, and soot production. Mass fraction burned analyses of pressure data were used to investigate the combustion processes of the various operating conditions. An infrared camera was used to visualize fuel spray events and exothermic combustion gases. A visible, high-speed camera was used to image natural luminosity produced by soot. The recorded images were post-processed to analyze the fuel spray, the projected exothermic areas produced by combustion, as well as soot production of different load conditions. Probability maps of combustion and fuel spray occurrence in the cylinder are presented for insight into the combustion processes of the different conditions.
Technical Paper

Combustion Characteristics of a Single-Cylinder Engine Equipped with Gasoline and Ethanol Dual-Fuel Systems

2008-06-23
2008-01-1767
The requirement of reduced emissions and improved fuel economy led the introduction of direct-injection (DI) spark-ignited (SI) engines. Dual-fuel injection system (direct-injection and port-fuel-injection (PFI)) was also used to improve engine performance at high load and speed. Ethanol is one of the several alternative transportation fuels considered for replacing fossil fuels such as gasoline and diesel. Ethanol offers high octane quality but with lower energy density than fossil fuels. This paper presents the combustion characteristics of a single cylinder dual-fuel injection SI engine with the following fueling cases: a) gasoline for PFI and DI, b) PFI gasoline and DI ethanol, and c) PFI ethanol and DI gasoline. For this study, the DI fueling portion varied from 0 to 100 percentage of the total fueling over different engine operational conditions while the engine air-to-fuel ratio remained at a constant level.
Journal Article

Comparison of Excess Air (Lean) vs EGR Diluted Operation in a Pre-Chamber Air/Fuel Scavenged Dual Mode, Turbulent Jet Ignition Engine at High Dilution Rate (~40%)

2021-04-06
2021-01-0455
Charge dilution is widely considered as one of the leading strategies to realize further improvement in thermal efficiency from current generation spark ignition engines. While dilution with excess air (lean burn operation) provides substantial thermal efficiency benefits, drastically diminished NOx conversion efficiency of the widely used three-way-catalyst (TWC) during off-stoichiometric/lean burn operation makes the lean combustion rather impractical, especially for automotive applications. A more viable alternative to lean operation is the dilution with EGR. The problem with EGR dilution has been the substantially lower dilution tolerance limit with EGR and a consequent drop in thermal efficiency compared to excess air/lean operation. This is particularly applicable to the pre-chamber jet ignition technologies with considerably higher lean burn capabilities but much lower EGR tolerance due to the presence of a high fraction of residuals inside the pre-chamber.
Technical Paper

Establishment of a Database by Conducting Intake Manifold and In-Cylinder Flow Measurements inside an Internal Combustion Engine Assembly

2013-04-08
2013-01-0565
An experimental study has been conducted to quantify the velocity and pressure inside an idealized intake manifold of a motored internal combustion engine assembly. The aim of this work is to provide the real-time boundary conditions for more accurate multi-dimensional numerical simulations of complex in-cylinder flows in an internal combustion engine as well as the resultant in-cylinder flow patterns. The geometry of the intake manifold is simplified for this purpose. A hot-wire anemometer and a piezoresistive absolute pressure transducer are used to measure the velocity and pressure, respectively, over a plane inside the circular section of the intake manifold. In addition, pressure measurements are performed over an elliptical section near the intake port. Phase-averaged velocity and pressure profiles are then calculated from the instantaneous measurements. Experiments were performed at 900 and 1200 rpm engine speeds with wide open throttle.
Journal Article

High-Speed Flow and Combustion Visualization to Study the Effects of Charge Motion Control on Fuel Spray Development and Combustion Inside a Direct-Injection Spark-Ignition Engine

2011-04-12
2011-01-1213
An experimental study is performed to investigate the effects of charge motion control on in-cylinder fuel-air mixture preparation and combustion inside a direct-injection spark-ignition engine with optical access to the cylinder. High-pressure production injector is used with fuel pressures of 5 and 10 MPa. Three different geometries of charge motion control (CMC) device are considered; two are expected to enhance the swirl motion inside the engine cylinder whereas the third one is expected to enhance the tumble motion. Experiments are performed at 1500 rpm engine speed with the variation in fuel injection timing, fuel pressure and the number of injections. It is found that swirl-type CMC devices significantly enhance the fuel-air mixing inside the engine cylinder with slower spray tip penetration than that of the baseline case without CMC device. Combustion images show that the flame growth is faster with CMC device compared to the similar case without CMC device.
Technical Paper

In-cylinder Combustion Visualization of a Direct-injection Spark-ignition Engine with Different Operating Conditions and Fuels

2012-09-10
2012-01-1644
A direct-injection and spark-ignition single-cylinder engine with optical access to the cylinder was used for the combustion visualization study. Gasoline and ethanol-gasoline blended fuels were used in this investigation. Experiments were conducted to investigate the effects of fuel injection pressure, injection timing and the number of injections on the in-cylinder combustion process. Two types of direct fuel injectors were used; (i) high-pressure production injector with fuel pressures of 5 and 10 MPa, and (ii) low-pressure production-intent injector with fuel pressure of 3 MPa. Experiments were performed at 1500 rpm engine speed with partial load. In-cylinder pressure signals were recorded for the combustion analyses and synchronized with the high-speed combustion imaging recording. Visualization results show that the flame growth is faster with the increment of fuel injection pressure.
Technical Paper

Measurements of Cycle to Cycle Variability of the Inlet Flow of Fuel Injectors Using LDA

2006-10-16
2006-01-3314
The focus of this research effort was to develop a technique to measure the cyclic variability of the mass injected by fuel injectors. Successful implementation of the measurement technique introduced in this paper can be used to evaluate injectors and improve their designs. More consistent and precise fuel injectors have the potential to improve fuel efficiency, engine performance, and reduce emissions. The experiments for this study were conducted at the Michigan State University Automotive Research Experiment Station. The setup consists of a fuel supply vessel pressurized by compressed nitrogen, a Dantec laser Doppler anemometry (LDA) system to measure the centerline velocity of fuel, a quartz tube for optical access, and a Cosworth IC 5460 to control the injector. The detector on the LDA system is capable of resolving Doppler bursts as short as 6μs, depending on the level of seeding, thus giving a detailed time/velocity profile.
Technical Paper

Modeling of Piston Ring-Cylinder Bore-Piston Groove Contact

2015-04-14
2015-01-1724
A three-dimensional piston ring model has been developed using finite element method with eight-node hexahedral elements. The model predicts the piston ring conformability with the cylinder wall as well as the separation gap between the interfaces if existing in the radial direction. In addition to the radial interaction between the ring front face and the cylinder wall, the model also predicts the contact between the ring and groove sides in the axial direction. This means, the ring axial lift, ring twist, contact forces with the groove sides along the circumferential direction are all calculated simultaneously with the radial conformability prediction. The ring/groove side contact can be found for scraper ring at static condition, which is widely used as the second compression ring in a ring pack. Thermal load is believed having significant influence on the ring pack performance.
Technical Paper

Numerical Simulations of Turbulent Sprays with a Multicomponent Evaporation Model

2013-04-08
2013-01-1603
A multicomponent droplet evaporation model which discretizes the one-dimensional mass and temperature profiles inside a droplet with a finite volume method has been developed and implemented into a large-eddy simulation (LES) model for spray simulations. The LES and multicomponent models were used along with the KH-RT secondary droplet breakup model to simulate realistic fuel sprays in a closed vessel. The effect of various spray and ambient gas parameters on the liquid penetration length of different single component and multicomponent fuels was investigated. The numerical results indicate that the spray penetration length decreases non-linearly with increasing gas temperature or pressure and is less sensitive to changes in ambient gas conditions at higher temperatures or pressures. The spray models and LES were found to predict the experimental results for n-hexadecane and two multicomponent surrogate diesel fuels reasonably well.
Journal Article

Optical Engine Operation to Attain Piston Temperatures Representative of Metal Engine Conditions

2017-03-28
2017-01-0619
Piston temperature plays a major role in determining details of fuel spray vaporization, fuel film deposition and the resulting combustion in direct-injection engines. Due to different heat transfer properties that occur in optical and all-metal engines, it becomes an inevitable requirement to verify the piston temperatures in both engine configurations before carrying out optical engine studies. A novel Spot Infrared-based Temperature (SIR-T) technique was developed to measure the piston window temperature in an optical engine. Chromium spots of 200 nm thickness were vacuum-arc deposited at different locations on a sapphire window. An infrared (IR) camera was used to record the intensity of radiation emitted by the deposited spots. From a set of calibration experiments, a relation was established between the IR camera measurements of these spots and the surface temperature measured by a thermocouple.
Technical Paper

POD-Based Analysis of In-Cylinder Flow Data from Molecular Tagging Velocimetry in a Spark-Ignition Engine

2018-09-10
2018-01-1770
The fluid motion inside the engine cylinder is transient, three-dimensional and highly turbulent. It is also well known that cycle-to-cycle flow variations have a considerable influence on cycle-to-cycle combustion variations. Laser-based diagnostic techniques, for example, particle image velocimetry (PIV) or molecular tagging velocimetry, can be used to measure two or three components of the velocity field simultaneously at multiple locations over a plane. The use of proper orthogonal decomposition (POD) allows quantification of cycle-to-cycle flow variations, as demonstrated using PIV data [1]. In the present work, POD is used to explore the cycle-to-cycle flow variations utilizing molecular tagging velocimetry data. The instantaneous velocity fields were obtained over a swirl measurement plane when engine was operated at 1500 rpm and 2500 rpm.
Technical Paper

Parameterization and FEA Approach for the Assessment of Piston Characteristics

2006-04-03
2006-01-0429
Elastohydrodynamic lubrication, piston dynamics and friction are important characteristics determining the performance and efficiency of an internal combustion engine. This paper presents a finite element analysis on a production piston of a gasoline engine performed using commercial software, the COSMOSDesignStar, and a comprehensive cylinder-kit simulation software, the CASE, to demonstrate the advantages of using a reduced, parameterized model analysis in the assessment of piston design characteristics. The full piston model is parameterized according to the CASE specifications. The two are analyzed and compared in the COSMOSDesignStar, considering thermal and mechanical loads. The region of interest is the skirt area on the thrust and anti-thrust sides of the piston.
Technical Paper

Spark Ignition and Pre-Chamber Turbulent Jet Ignition Combustion Visualization

2012-04-16
2012-01-0823
Natural gas is a promising alternative fuel as it is affordable, available worldwide, has high knock resistance and low carbon content. This study focuses on the combustion visualization of spark ignition combustion in an optical single cylinder engine using natural gas at several air to fuel ratios and speed-load operating points. In addition, Turbulent Jet Ignition optical images are compared to the baseline spark ignition images at the world-wide mapping point (1500 rev/min, 3.3 bar IMEPn) in order to provide insight into the relatively unknown phenomenon of Turbulent Jet Ignition combustion. Turbulent Jet Ignition is an advanced spark initiated pre-chamber combustion system for otherwise standard spark ignition engines found in current passenger vehicles. This next generation pre-chamber design simply replaces the spark plug in a conventional spark ignition engine.
Technical Paper

The Effect of Fuel Injection Pressure on Spray and Combustion Characteristics in a Gasoline Direct-Injection Engine

2014-10-13
2014-01-2604
A single-cylinder gasoline direct-injection engine was used for fuel spray and combustion visualizations with optical access to the combustion chamber. Experiments were conducted to investigate the effect of fuel injection pressure on spray and combustion characteristics inside the engine cylinder. A multi-hole high-pressure production injector was used with fuel pressures of 5 and 10 MPa. A Mie scattering technique was used to image the liquid phase of the fuel dispersion. The obtained spray images were then used to study the macroscopic spray characteristics such as spray structure, spray tip penetration and spray angle. Combustion visualization tests were performed to evaluate the effect of fuel injection pressure on combustion characteristics. In-cylinder pressure signals were recorded for the combustion analyses and synchronized with the high-speed combustion imaging recording.
X