Refine Your Search

Topic

Search Results

Technical Paper

A Turbulence and Cavitation Induced Breakup Model for Fuel Spray Modeling

2014-10-13
2014-01-2737
Fuel spray atomization process is known to play a key role in affecting mixture formation, combustion efficiency and soot emissions in direct injection engines. The fuel spray Computational Fluid Dynamics (CFD) modeling technology can be an effective means to study and predict spray characteristics such as penetration, droplet size and droplet velocity, and as a consequence, to drastically reduce experimental work during the engine development process. For this reason, an accurate numerical simulation of the spray evolution process is imperative. Different approaches and various models based on aerodynamically induced breakup mechanism have been implemented to simulate spray atomization process in earlier studies, and the effects of turbulence and cavitation from the injector nozzle is recently being concerned increasingly by engine researchers. In this study, an enhanced turbulence and cavitation induced primary breakup model combining aerodynamic breakup mechanism is developed.
Technical Paper

An Experimental Study Using Spark-Assisted Stratified Compression Ignition (SSCI) Hybrid Combustion Mode for Engine Particle Number (PN) Reduction in a High Compression Ratio Gasoline Engine

2016-04-05
2016-01-0758
Particle Number (PN) have already been a big issue for developing high efficiency internal combustion engines (ICEs). In this study, controlled spark-assisted stratified compression ignition (SSCI) with moderate end-gas auto-ignition was used for reducing PN in a high compression ratio gasoline direct injection (GDI) engine. Under wide open throttle (WOT) and Maximum Brake Torque timing (MBT) condition, high external cooled exhaust gas recirculation (EGR) was filled in the cylinder, while two-stage direct injection was used to form desired stoichiometric but stratified mixture. SSCI combustion mode exhibits two-stage heat release, where the first stage is associated with flame propagation induced by spark ignition and the second stage is the result of moderate end-gas auto-ignition without pressure oscillation at the middle or late stage of the combustion process.
Technical Paper

CFD Modeling of Mixture Preparation and Soot Formation in a Downsized Gasoline Direct Injection Engine

2016-04-05
2016-01-0586
With increasingly stringent requirements and regulations related to particulate matter(PM) emissions, manufacturers are paying more and more attention to emissions from gasoline direct injection(GDI) engines. The present paper proposes an improved two-step soot model. The model is applied in the Kiva-Chemkin program to simulate the processes of spray impinging, fuel mixture preparation, combustion and soot formation in a typical turbocharged downsized GDI engine. The simulation results show that soot formation in the GDI engine is attributed to non-uniform distribution of the air-fuel mixture and pool fire of wall film in the cylinder. Under homogeneous mode, increasing the injection advance angle can optimize fuel atomization and improve air-fuel mixing, thus reducing soot formation. However, an excessive injection advance angle may cause spray to impinge on the cylinder wall and this will sharply increase the soot emission.
Technical Paper

Combustion Mode Switch by Integrating Stoichiometric ASSCI Mode in a Four-cylinder Gasoline SI/HCCI Engine

2014-04-01
2014-01-1288
Homogeneous Charge Compression Ignition (HCCI) and Spark Ignition (SI) dual-mode operation provides a practical solution to apply HCCI combustion in gasoline engines. However, the different requirements of air-fuel ratio and EGR ratio between HCCI combustion and SI combustion results in enormous control challenges in HCCI/SI mode switch. In this paper, HCCI combustion was achieved in a four-cylinder gasoline direct injection engine without knock and misfire using close-loop control by knock index. Assisted Spark Stratified Compression Ignition (ASSCI) combustion was obtained stably at medium-high load. ASSCI combustion exhibits two-stage heat release with initial flame propagation and controlled auto-ignition. The knock index of ASSCI combustion is less than HCCI combustion due to the lower pressure rise rate.
Technical Paper

Combustion and Emission Characteristics of an Ammonia-Hydrogen Engine under Passive- and Active-Jet Ignition

2024-04-09
2024-01-2109
In the context of carbon neutrality, ammonia is considered a zero-carbon fuel with potential applications in the transportation sector. However, its high ignition energy, low flame speed, and high natural temperature, indicative of low reactivity, make it challenging to be applied as a sole fuel in engines. In such a scenario, the use of another zero-carbon and highly reactive fuel, hydrogen, becomes necessary to enhance the combustion of ammonia. Furthermore, jet ignition, a method known for improving engine combustion performance, may also hold potential for enhancing the combustion performance of ammonia engines. To explore the applicability of jet ignition in engines, this study conducted experimental research on a single-cylinder engine. Two ignition methods were employed: passive jet ignition of premixed ammonia-hydrogen at a compression ratio of 11.5, and active jet ignition of pure ammonia using hydrogen jet flame at a compression ratio of 17.3.
Technical Paper

Development of a Turbulence-induced Breakup Model for Gasoline Spray Simulation

2015-04-14
2015-01-0939
The design and optimization of a modern spray-guided gasoline direct injection engine require a thorough understanding of the fuel spray characteristics and atomization process. The fuel spray Computational Fluid Dynamics (CFD) modeling technology can be an effective means to study and predict spray characteristics, and as a consequence, to drastically reduce experimental work during the engine development process. For this reason, an accurate numerical simulation of the spray evolution process is imperative. Different models based on aerodynamically-induced breakup mechanism have been implemented to simulate spray atomization process in earlier studies, and the effect of turbulence from the injector nozzle is recently being concerned increasingly by engine researchers. In this study, a turbulence-induced primary breakup model coupled with aerodynamic instability is developed.
Technical Paper

Effect of Oil and Gasoline Properties on Pre-Ignition and Super-Knock in a Thermal Research Engine (TRE) and an Optical Rapid Compression Machine (RCM)

2016-04-05
2016-01-0720
High boost and direct injection are effective ways for energy saving in gasoline engines. However, the occurrence of super-knock at high load has become a main obstacle for further improving power density and fuel economy. It has been known that super-knock can be induced by pre-ignition, and oil droplet auto-ignition is found to be one of the possible mechanisms. In this study, experiments were conducted in a single-cylinder thermal research engine (TRE), in which different types of oil and surrogates were directly injected into the cylinder and then led to pre-ignition and super-knock. The effect of oil injection timing, oil injection quantity, different gasoline and different oil were tested. All the oil in this work could induce pre-ignition, even though their combustion phasing was much later than that in the case of n-hexadecane.
Technical Paper

Effects of Spark Ignition and Stratified Charge on Gasoline HCCI Combustion With Direct Injection

2005-04-11
2005-01-0137
HCCI combustion was studied in a 4-stroke gasoline engine with a direct injection system. The electronically controlled two-stage gasoline injection and spark ignition system were adopted to control the mixture formation, ignition timing and combustion rate in HCCI engine. The engine could be operated in HCCI combustion mode in a range of load from 1 to 5 bar IMEP and operated in SI combustion mode up to load of 8 bar IMEP. The HCCI combustion characteristics were investigated under different A/F ratios, engine speeds, starts of injection, as well as spark ignition enabled or not. The test results reveal the HCCI combustion features as a high-pressure gradient after ignition and has advantages in high thermal efficiency and low NOx emissions over SI combustion. At the part load of 1400rpm and IMEP of 3.5bar, ISFC in HCCI mode is 25% lower and NOx emissions is 95% lower than that in SI mode.
Technical Paper

Effects of Temporal and Spatial Distributions of Ignition and Combustion on Thermal Efficiency and Combustion Noise in DICI Engine

2014-04-01
2014-01-1248
The effects of the temporal and spatial distributions of ignition timings of combustion zones on combustion noise in a Direct Injection Compression Ignition (DICI) engine were studied using experimental tests and numerical simulations. The experiments were performed with different fuel injection strategies on a heavy-duty diesel engine. Cylinder pressure was measured with the sampling intervals of 0.1°CA in order to resolve noise components. The simulations were performed using the KIVA-3V code with detailed chemistry to analyze the in-cylinder ignition and combustion processes. The experimental results show that optimal sequential ignition and spatial distribution of combustion zones can be realized by adopting a two-stage injection strategy in which the proportion of the pilot injection fuel and the timings of the injections can be used to control the combustion process, thus resulting in simultaneously higher thermal efficiency and lower noise emissions.
Technical Paper

Experimental Study on Pre-Ignition and Super-Knock in Gasoline Engine Combustion with Carbon Particle at Elevated Temperatures and Pressures

2015-04-14
2015-01-0752
Occurrence of sporadic super-knock is the main obstacle to the development of advanced gasoline engines. One of the possible inducements of super-knock, agglomerated soot particle induced pre-ignition, was studied for high boosted gasoline direct injection (GDI) engines. The correlation between soot emissions and super-knock frequency was investigated in a four-cylinder gasoline direct injection production engine. The test results indicate that higher in-cylinder soot emission correlate with more pre-ignition and super-knock cycles in a GDI production engine. To study the soot/carbon particles trigger super-knock, a single-cylinder research engine for super-knock study was developed. The carbon particles with different temperatures and sizes were introduced into the combustion chamber to trigger pre-ignition and super-knock.
Technical Paper

High Efficiency and Low Pollutants Combustion: Gasoline Multiple Premixed Compression Ignition (MPCI)

2012-04-16
2012-01-0382
A new combustion mode namely multiple premixed compression ignition (MPCI) for gasoline engines was proposed. The MPCI mode can be realized by two or more times gasoline injections into cylinder with a high pressure around the compression TDC and featured with a premixed combustion after each injection in the cylinder, which is different from the existed gasoline direct injection compression ignition (GDICI) modes such as homogeneous charge compression ignition (HCCI) mode with gasoline injection occurred in intake stroke, and partially premixed compression ignition (PPCI) mode with multiple gasoline injections in intake and compression strokes before the start of combustion (SOC). Therefore the spray and combustion of the MPCI mode are alternatively occurred as "spray-combustion-spray-combustion" near the TDC, rather than "spray-spray-combustion" sequence as traditional PPCI gasoline engines.
Journal Article

High Speed Imaging Study on the Spray Characteristics of Dieseline at Elevated Temperatures and Back Pressures

2014-04-01
2014-01-1415
Dieseline combustion as a concept combines the advantages of gasoline and diesel by offline or online blending the two fuels. Dieseline has become an attractive new compression ignition combustion concept in recent years and furthermore an approach to a full-boiling-range fuel. High speed imaging with near-parallel backlit light was used to investigate the spray characteristics of dieseline and pure fuels with a common rail diesel injection system in a constant volume vessel. The results were acquired at different blend ratios, and at different temperatures and back pressures at an injection pressure of 100MPa. The penetrations and the evaporation states were compared with those of gasoline and diesel. The spray profile was analyzed in both area and shape with statistical methods. The effect of gasoline percentage on the evaporation in the fuel spray was evaluated.
Journal Article

Impact of Particle Characteristics and Engine Conditions on Deposit-Induced Pre-Ignition and Superknock in Turbocharged Gasoline Engines

2017-10-08
2017-01-2345
Low Speed Pre-Ignition (LSPI), also referred to as superknock or mega-knock is an undesirable turbocharged engine combustion phenomenon limiting fuel economy, drivability, emissions and durability performance. Numerous researchers have previously reported that the frequency of Superknock is sensitive to engine oil and fuel composition as well as engine conditions in controlled laboratory and engine-based studies. Recent studies by Toyota and Tsinghua University have demonstrated that controlled induction of particles into the combustion chamber can induce pre-ignition and superknock. Afton and Tsinghua recently developed a multi-physics approach which was able to realistically model all of the elementary processes known to be involved in deposit induced pre-ignition. The approach was able to successfully simulate deposit induced pre-ignition at conditions where the phenomenon has been experimentally observed.
Technical Paper

Improving Combustion and Emission Characteristics in Heavy-Duty Natural-Gas Engine by Using Pistons Enhancing Turbulence

2018-09-10
2018-01-1685
Compressed Natural Gas (CNG), because of its low cost, high H/C ratio, and high octane number, has great potential in automotive industry, especially for heavy-duty commercial vehicles. However, relative slow flame speed of natural gas leads to long combustion duration and low thermal efficiency and tends to cause knock combustion at high load, which will aggravate engine thermal load and reliability. Enhancing turbulence intensity in combustion chamber is an effective way to accelerate flame propagation speed and improve combustion performance. In this study, the flow simulations of several piston bowls with different inner-convex forms were carried out using three-dimensional computational fluid dynamics (3D-CFD) software CONVERGE. The numerical results showed the piston bowls with inner-convex could disturb the charge swirl motion and enhance turbulence of different intensity. A hexagram geometry bowl was proved to have the best function in strengthening turbulence intensity.
Technical Paper

Investigation on Ignition of a Single Lubricating Oil Droplet in Premixed Combustible Mixture at Engine-Relevant Conditions

2019-04-02
2019-01-0298
The ignition of lubricating oil droplet has been proved to be the main factor for pre-ignition and the following super-knock in turbocharged gasoline direct injection engine. In this paper, the ignition process of lubricating oil droplet in combustible ambient gaseous mixture was investigated in a rapid compression machine (RCM). The pre-ignition induction by oil droplet of the ambient gaseous mixture was analyzed under different initial droplet volume and effective temperature conditions. The oil droplet was suspended on a tungsten fiber in the combustion chamber and the ignition process was recorded by a high-speed camera through the quartz window mounted at the end of the combustion chamber. The pressure traces were also obtained by a sensor in order to get the ignition delay and analyze the combustion process in detail.
Technical Paper

Investigation on Pre-ignition and Super-Knock in Highly Boosted Gasoline Direct Injection Engines

2014-04-01
2014-01-1212
High boost and direct injection hold the potential of enhanced power density and fuel consumption in the development of gasoline engines. However, super-knock with strong destructiveness was widely reported at low-speed and high-load operating regime in turbocharged GDI engines. The objective of this study is to clarify the characteristics of super-knock and to try to find some feasible solutions to suppress super-knock. To fast evaluate super-knock at low-speed and high-load regime, a rapid test procedure including three super-knock test sections of 5000 cycles with 3 idle operations, was proposed. The experimental data indicate that pre-ignition is not the sufficient condition for super-knock. Pre-ignition may lead to super-knock, heavy knock, slight knock, and non-knock. Compared with conventional knock, knock intensity of super-knock is much higher and the maximum amplitude of pressure rise at start of knock is more than one order of magnitude higher.
Technical Paper

Knocking Suppression using Stratified Stoichiometric Mixture in a DISI Engine

2010-04-12
2010-01-0597
Knocking is the main obstacle of increasing compression ratio to improve the thermal efficiency of gasoline engines. In this paper, the concept of stratified stoichiometric mixture (SSM) was proposed to suppress knocking in gasoline engines. The rich mixture near the spark plug increases the speed of the flame propagation and the lean mixture in the end gas suppresses the auto ignition. The overall air/fuel ratio keeps stoichiometric to solve the emission problem using three way catalysts (TWC). Moreover, both the rich zone and lean zone lead to soot free combustion due to homogeneous mixture. The effect on the knocking of homogeneous and stratified mixture was studied in a direct injection spark ignition (DISI) engine using numerical simulation and experimental investigation respectively.
Technical Paper

Modeling of HCCI Combustion: From 0D to 3D

2006-04-03
2006-01-1364
The detailed chemical kinetics was implemented into the 0D single-zone model, 1D engine cycle model and 3D CFD model respectively. Both simulation and experiment were carried out on a four-stroke gasoline HCCI engine with direct injection. The 0D model (HRG) was developed to study the isolating effect of HCCI parameters. The 1D engine cycle model with HRG was established to study the gas exchange process and the direct injection strategy in the gasoline HCCI engine with two-stage direct injection (TSDI) and negative valve overlap (NVO). The 3D model with HRG was constructed to study the ignition control mechanism in “two-zone HCCI” combustion via analysis the auto-ignition spots distribution in combustion chamber. “Two-zone HCCI” is defined in this paper as premixed ultra-lean compression ignition combining with premixed ultra-rich compression ignition. The three models were validated by experiments.
Technical Paper

Multi-dimensional Simulation of HCCI Engine Using Parallel Computation and Chemical Kinetics

2008-04-14
2008-01-0966
This study improved the computational efficiency significantly using parallel computation and reduced mechanisms. A 3-dimensional engine moving mesh of intake port, exhaust port and combustion chamber was established for HCCI engine cycle simulation. To achieve a more accurate analysis, chemical kinetics was implemented into the CFD code to study the intake, spray, ignition, combustion, and pollution formation process in HCCI engine. The simulations were run on a cluster of 16-CPU, parallelized by Message-Passing Interface (MPI) mode. The cases with detailed and reduced reaction mechanisms were calculated using 1, 2, 4, 8, 16 CPUs respectively and the corresponding computational time and speed-up were discussed. Using MPI 8-CPU with reduced mechanism (less than 40 species) is the optimal scheme for CFD/Chemistry calculation of typical HCCI engine.
Technical Paper

Numerical Resolution of Multiple Premixed Compression Ignition (MPCI) Mode and Partially Premixed Compression Ignition (PPCI) Mode for Low Octane Gasoline

2013-10-14
2013-01-2631
Two premixed compression ignition modes for low octane gasoline are numerically investigated. The multiple premixed compression ignition (MPCI) mode is featured with a sequence of “spray- combustion- spray- combustion”, while the partially premixed compression ignition (PPCI) mode is a sequence of “spray- spray- combustion”. This paper compares the combustion process of the two modes using multi-dimensional CFD code, KIVA-3v, which can perform chemical reaction calculations for different fuels by a discrete multiple component (DMC) method. The fuel used for simulation consists of 58.5% i-C8H18 and 41.5% n-C7H16 in volume, and has the same RON and similar physical properties to straight-run naphtha used in the experiment. The engine operating condition is fixed at a 1600rpm and 0.7 MPa IMEP. The injection strategies for these two modes are different. All of the parameters in the simulation come from the single cylinder engine experiments.
X