Refine Your Search

Topic

Search Results

Technical Paper

A 1D Analysis into the Effect of Variable Valve Timing on HCCI Engine Parameters

2008-10-06
2008-01-2459
The effects of variable intake-valve-timing on the gas exchange process and performance of a 4-valve direct-injection HCCI engine were computationally investigated using a 1D gas dynamics engine cycle simulation code. A non-typical strategy to actuate the pair of intake valves was examined; whereby each valve was assumed to be actuated independently at different timing. Using such an intake valves strategy, the obtained results showed a considerable improvement of the engine parameters such as load and charging efficiency as compared with the typical identical intake valve pair timings case. Additional benefits of minimizing pumping losses and improving the fuel economy were demonstrated with the use of the non-simultaneous actuation of the intake valve pair having the opening timing of the early intake valve coupled with a symmetric degree of crank angle for the timing of exhaust valve closing.
Technical Paper

A CFD Investigation into the Effects of Intake Valves Events on Airflow Characteristics in a Motored 4-Valve Engine Cylinder with Negative Valve Overlapping

2007-09-16
2007-24-0032
This paper presents a computational study of the airflow features within a motored 4-valve direct injection engine cylinder. An unconventional intake valve strategy was investigated; whereby each valve on the pair of intake valves was assumed to be actuated with different lifts and duration. One of the intake valves was assumed to follow a high-lift long duration valve-lift profile while the other was assumed to follow a low-lift short duration valve-lift profile. The pair of exhaust valves was assumed to be actuated with two identical low-lift short duration valve-lift profiles in order to generate the so-called negative valve overlapping (NVO). The in-cylinder flow fields developed with such intake valve strategy were compared to those produced in the same engine cylinder but with the application of identical low-lift short duration intake valve events.
Technical Paper

A Real-Time Control Oriented HCCI Combustion Model in 4-Stroke HCCI/SI GDI Engine and Model-Based Fast Calibration Development

2012-04-16
2012-01-1123
For Homogeneous Charge Compression Ignition (HCCI) combustion, the auto-ignition process is very sensitive to in-cylinder conditions. This includes the change in in-cylinder temperature, the composition of chemical components and their concentrations. This sensitivity presents a major challenge for the accurate control of reliable and efficient HCCI combustion. This paper outlines our recent work: 1. a real-time control oriented gasoline-fueled HCCI combustion model and its implementation in Simulink with fixed step for the conversion into dSPACE Hardware-in-the-Loop (HIL) simulation purpose. 2. The development of model-based fast calibration for the best fuel efficiency and hydrocarbon emissions via evolutionary algorithm (EA). The model reported in this paper is able to run in real-time cycle-to-cycle under engine speeds below 4000rpm and with fixed simulation steps.
Journal Article

An Investigation into the Characteristics of DISI Injector Deposits Using Advanced Analytical Methods

2014-10-13
2014-01-2722
There is an increasing recognition of injector deposit (ID) formation in fuel injection equipment as direct injection spark ignition (DISI) engine technologies advance to meet increasingly stringent emission legislation and fuel economy requirements. While it is known that the phenomena of ID in DISI engines can be influenced by changes in fuel composition, including increasing usage of aliphatic alcohols and additive chemistries to enhance fuel performance, there is however still a great deal of uncertainty regarding the physical and chemical structure of these deposits, and the mechanisms of deposit formation. In this study, a mechanical cracking sample preparation technique was developed to assess the deposits across DISI injectors fuelled with gasoline and blends of 85% ethanol (E85).
Technical Paper

An Investigation into the Operating Mode Transitions of a Homogeneous Charge Compression Ignition Engine Using EGR Trapping

2004-06-08
2004-01-1911
While Homogeneous Charge Compression Ignition (HCCI) is a promising combustion mode with significant advantages in fuel economy improvement and emission reductions for vehicle engines, it is subject to a number of limitations, for example, hardware and control complexity, or NOx and NVH deterioration near its operating upper load boundary, diminishing its advantages. Conventional spark-ignition combustion mode is required for higher loads and speeds, thus the operating conditions near the HCCI boundaries and their corresponding alternatives in SI mode must be studied carefully in order to identify practical strategies to minimise the impact of the combustion mode transition on the performance of the engine. This paper presents the results of an investigation of the combustion mode transitions between SI and HCCI, using a combination of an engine cycle simulation code with a chemical kinetics based HCCI combustion code.
Technical Paper

CFD Analysis of Air Intake System with Negative Pressure on Intake Grill

2008-06-23
2008-01-1643
The objective of the current research was to predict and analyze the flow through the grill of air intake system which is positioned behind the front wheel arch of vehicle. Most of the vehicle used today locates the grill of air intake at the front side so to acquire benefit of ram effect. In some cases, however, the grill is located behind the vehicle to improve wading performance. The geometry of air intake system of Land Rover Freelander was used in the modelling approach. The study was focused on different flow speeds on the grill at high load operation where the air speed at the grill side is high and creates negative pressure. The CFD results are validated against experimental data of steady flow test bench.
Technical Paper

Combustion and Emission Characteristics of a PPCI Engine Fuelled with Dieseline

2012-04-16
2012-01-1138
In this paper blends of diesel and gasoline (dieseline) fuelled Partially Premixed Compression Ignition (PPCI) combustion and the comparison to conventional diesel combustion is investigated. The tests are carried out using a light duty four cylinder Euro IV diesel engine. The engine condition is maintained at 1800 rpm, 52 Nm (equivalent IMEP around 4.3 bar). Different injection timings and different amounts of EGR are used to achieve the PPCI combustion. The results show that compared to the conventional diesel combustion, the smoke and NOx emissions can be reduced by more than 95% simultaneously with dieseline fuelled PPCI combustion. The particle number total concentration can be reduced by 90% as well as the mean diameter (from 54 nm for conventional diesel to 16 nm for G50 fuelled PPCI). The penalty is a slightly increased noise level and lower indicated efficiency, which is decreased from 40% to 38.5%.
Technical Paper

Combustion and Emissions in a Spark-ignition Engine Fueled with Coal-Bed Gas - Modeling and Experimental Results

2005-10-24
2005-01-3804
There is a worldwide interest in the research of various alternative fuels for automotive engines for the purpose of reduction of CO2 and toxically harmful exhaust emissions. Coal-bed gas, the main component of which is methane, has been considered an attractive alternative fuel for combustion engines due to its abundant resources, high hydrogen-carbon ratios and very low soot formation tendency. The composition of available coal-bed gas, however, can vary considerably, and this has made its combustion stability difficult to control in conventional spark ignition engines. To overcome the problem, a combustion system with a swirl chamber connected to the main combustion chamber through an orifice has been developed for the use of coal-bed gas in spark ignition engines, and the corresponding combustion process has been studied using a developed combustion model involving flame kernel formation and flame front propagation.
Technical Paper

Control of A/F Ratio During Engine Transients

1999-05-03
1999-01-1484
Variations in air-fuel ratio within a 16-valve port-injection spark-ignition engine have been examined as a consequence of rapid transients in load at constant speed with fuel injection controlled by the production engine-management system and by a custom-built controller. The purpose was to minimize excursions from stoichiometry by the use of a controller to impose an injection strategy, guided by results obtained with the production management system. The strategy involves a model that takes account of manifold filling and the delays in transport of fuel from the injectors to the cylinder. The results show that the excursions in air-fuel ratio from stoichiometry were reduced from more than 25% to 6%.
Technical Paper

Effect of Intake Valves Timings on In-Cylinder Charge Characteristics in a DI Engine Cylinder with Negative Valve Overlapping

2008-04-14
2008-01-1347
This paper presents a computational investigation of the in-cylinder charge characteristics within a motored 4-valve direct injection HCCI engine cylinder with applied negative valve overlapping. Non-typical intake valve strategy was investigated; whereby the pair of intake valves was assumed to follow the same low-lift short-duration valve-lift profile but actuated at different timings. The phase of intake-valve-opening relative to that of exhaust-valve-closing was optimized in terms of pumping losses. The flow fields generated with such an intake valve strategy were compared to those produced in the same engine cylinder but with typical early and late intake-valve-timing. The computational results of such an approach showed modifications in the in-cylinder swirl and tumble motions during the intake and compression strokes.
Technical Paper

Effects of Ethanol-Blended Fuel on Combustion Characteristics, Gaseous and Particulate Emissions in Gasoline Direct Injection (GDI) Engines

2021-09-22
2021-26-0356
Ethanol fuel blends with gasoline for spark ignition (SI) internal combustion engines are widely used on account of their advantages in terms of fuel economy and emissions reduction potential. The focus of this paper is to study the effects of these blends on combustion characteristics such as in-cylinder pressure profiles, gas-phase emissions (e.g., unburned hydrocarbons, NOx) and particulates (e.g., particulate matter and particle number) using both measurement campaigns and digital engineering workflows. Nineteen load-speed operating points in a 1L 3-cylinder GDI SI engine were measured and modelled. The measurements for in-cylinder pressure and emissions were repeated at each operating point for three types of fuel: gasoline (E0, 0% by volume of ethanol blend), E10 (10 % by volume of ethanol blend) and E20 (20% by volume of ethanol blend).
Technical Paper

Flame Kernel Growth and Propagation in an Optical Direct Injection Engine Using Laser Ignition

2017-10-08
2017-01-2243
The demand for more efficient and clean engines have prompted the research and development of new engine technologies. Automotive engines expected to run with leaner mixtures and higher compression ratios. Lean burn is effective to increase fuel economy whilst reducing emissions but unreliable ignition of the lean mixtures by the conventional spark plug is one of the problems which causes concerns to the engine designers. Laser ignition is a promising technology and holds many benefits over the spark ignition because it can extend the ignitability of lean mixtures with flexibility of the ignition location and absence of electrode degradation for improved engine performance with lean burn. In this study, high-speed photography is used to investigate the flame kernel growth and propagation in an optical direct injection engine using laser ignition by an Nd:YAG laser.
Technical Paper

Improving Cold Start and Transient Performance of Automotive Diesel Engine at Low Ambient Temperatures

2016-04-05
2016-01-0826
Ambient temperature has significant impact on engine start ability and cold start emissions from diesel engines. These cold start emissions are accounted for substantial amount of the overall regulatory driving cycle emissions like NEDC or FTP. It is likely to implement the low temperature emissions tests for diesel vehicles, which is currently applicable only for gasoline vehicles. This paper investigates the potential of the intake heating strategy on reducing the driving cycle emissions from the latest generation of turbocharged common rail direct injection diesel engines at low ambient temperature conditions. For this investigation an air heater was installed upstream of the intake manifold and New European Driving Cycle (NEDC) tests were conducted at -7°C ambient temperature conditions for the different intake air temperatures. Intake air heating reduced the cranking time and improved the fuel economy at low ambient temperatures.
Technical Paper

In-cylinder Flow with Negative Valve Overlapping - Characterised by PIV Measurement

2005-05-11
2005-01-2131
Negative valve overlapping is widely used for trapping residual burned gas within the cylinder to enable controlled Homogeneous Charge Compression Ignition (HCCI). HCCI has been shown as a promising combustion technology to improve the fuel economy and NOx emissions of gasoline engines. While the importance of in-cylinder flow in the fuel and air mixing process is recognised, the characteristics of air motion with specially designed valve events having reduced valve lift and durations associated with HCCI engines and their effect on subsequent combustion are not yet fully understood. This paper presents an investigation in an optical engine designed for HCCI combustion using EGR trapping. PIV techniques have been used to measure the in-cylinder flow field under motored conditions and a quantitative analysis has been carried out for the flow characterisation with comparison made against the flow in the same engine with conventional valve strategies for SI combustion.
Technical Paper

Influence of Coolant Temperature on Cold Start Performance of Diesel Passenger Car in Cold Environment

2016-02-01
2016-28-0142
Diesel engines are the versatile power source and is widely used in passenger car and commercial vehicle applications. Environmental temperature conditions, fuel quality, fuel injection strategies and lubricant have influence on cold start performance of the diesel engines. Strategies to overcome the cold start problem at very low ambient temperature include preheating of intake air, coolant, cylinder block. The present research work investigates the effect of coolant temperatures on passenger car diesel engine’s performance and exhaust emission characteristics during the cold start at cold ambient temperature conditions. The engine is soaked in the -7°C environment for 6 hours. The engine coolant is preheated to the desired coolant temperatures of 10 and 20°C by an external heater and the start ability tests were performed.
Technical Paper

Investigation of VVT and spark timing on combustion and particle emission from a GDI Engine during transient operation

2014-04-01
2014-01-1370
Transient operation is frequently used by vehicle engines and the exhaust emissions from the engine are mostly higher than those under the steady station. An experimental study has been conducted to investigate the effect of various valve timings and spark timings on combustion characteristics and particle emissions from a modern 3.0-liter Gasoline Direct Injection (GDI) passenger car engine. The transient condition was simulated by load increase from 5% to 15% at a constant engine speed with different settings of valve timings and spark timings. The transient particle emission measurement was carried out by a Cambustion DMS500 particulate analyser. The combustion characteristics of the engine during transient operation including cycle-by-cycle combustion variations were analyzed. The time-resolved particle number, particulate mass and particle size distribution were compared and analyzed between different engine settings.
Technical Paper

Modelling Study of Combustion and Gas Exchange in a HCCI (CAI) Engine

2002-03-04
2002-01-0114
The main obstacle for the development of Homogeneous Charge Compression Ignition (HCCI) engines is the control of auto-ignition timing, and one key is to control the trapped gas temperature so as to enable the autoignition at the end of compression stroke. Using special valve mechanisms, very high residual gas mass fraction can be achieved to raise the charge temperature. Gas exchange process hence plays a crucial role in such HCCI engines because of its strong interaction with combustion. The modification of the gas exchange process in a 4-stroke automotive engine for HCCI combustion is not straightforward, since the engine must be able to operate across a considerably wide range of speeds and loads. Intake air temperatures and the valve mechanism need to be controlled in order to deliver optimal engine performance and fuel economy. This paper presents a modelling study of the combustion and gas exchange in a HCCI engine.
Technical Paper

Modelling and Experimental Investigations of Supercharged HCCI Engines

2006-04-03
2006-01-0634
This paper focuses on supercharged HCCI engines employing internal EGR that is obtained by the use of negative valve overlap. In HCCI engines, the absence of throttling coupled with the use of high compression ratio to facilitate auto-ignition and with the use of lean mixtures result in improved fuel efficiency. High dilution is required to control the auto-ignition and it also results in reduction of the production of NOx. To compensate for the charge dilution effect, the method used to recover the loss of power is to introduce more air in to the engine which allows introducing also more fuel while maintaining high lambda. A supercharger is required to introduce the required amount of air into the engine. The modelling investigation performed with Ricardo WAVE® coupled with CHEMKIN® and experimental investigation for supercharged HCCI show significant improvement in terms of extension of load range and reduction of NOx over the naturally aspirated HCCI and also over SI operation.
Technical Paper

Modelling of HCCI Engines: Comparison of Single-zone, Multi-zone and Test Data

2005-05-11
2005-01-2123
This paper presents a modeling study of a gasoline HCCI engine using a single-zone and a multi-zone engine combustion models coupled with the CHEMKIN chemical kinetics solver for the closed part of the cycle. These combustion models are subsequently combined with a 1-D gas dynamics engine cycle simulation code which calculates the engine gas exchange to supply the boundary conditions for the in-cylinder simulation and also predicts engine performance. The simulated in-cylinder pressure history and charge composition at the time of exhaust valve opening are compared with the data from a parallel engine experimental project. Although the single-zone model is useful for parameter studies by predicting the trend of auto-ignition timing variations as the result of the effect of engine operating conditions, the matching of simulated and test data is good perhaps only if the mixture and temperature distributions in the cylinder are uniform.
Technical Paper

Operating Characteristics of a Homogeneous Charge Compression Ignition Engine with Cam Profile Switching - Simulation Study

2003-05-19
2003-01-1859
A single zone combustion model based on a chemical kinetic solver has been combined with a one-dimension thermo/gas dynamic engine simulation code to study the operating characteristics of a V6 engine in which Homogeneous Charge Compression Ignition (HCCI) operation (also referred to as ‘Controlled Auto-ignition” CAI) is enabled by a cam profile switching (CPS) system with negative valve overlap. An operational window within which HCCI combustion is possible has been identified and the limit of HCCI operating region for varied valve lift possibilities is explored. The mechanisms and potential fuel economy improvements within the HCCI envelope are studied and modelled results compared against data from similar engines. It is shown that for the best fuel economy the valve timing strategy needs to be selected very carefully, despite the engine's capability to operate at a range of valve timing combinations.
X