Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

04 Emission Reduction by Cylinder Wall Injection in 2-Stroke S.I. Engines

2002-10-29
2002-32-1773
A direct injection system in which fuel was injected through the cylinder wall was developed and detailed investigation was made for the purpose of reducing short-circuit of fuel in 2-stroke engines. As a result of dynamo tests using 430cc single cylinder engine, it was found that the injector was best attached at a location as close to TDC as possible on the rear transfer port side, and that the entire amount of fuel should be injected towards the piston top surface. Emissions were worsened if fuel was injected towards the exhaust port or spark plug. Although the higher injection pressure resulted in large emissions reduction effects, it did not have a significant effect on fuel consumption. When a butterfly exhaust valve, known to be effective against irregular combustion in the light load range, was applied, it was found to lead to further reductions in HC emission and fuel consumption while also improving combustion stability.
Technical Paper

1-D Numerical Model of a Spark Ignition Engine Fueled with Methanol for Off-Grid Charging Stations

2023-08-28
2023-24-0098
The road transportation sector is undergoing significant changes, and new green scenarios for sustainable mobility are being proposed. In this context, a diversification of the vehicles’ propulsion, based on electric powertrains and/or alternative fuels and technological improvements of the electric vehicles charging stations, are necessary to reduce greenhouse gas emissions. The adoption of internal combustion engines operating with alternative fuels, like methanol, may represent a viable solution for overcoming the limitations of actual grid connected charging infrastructure, giving the possibility to realize off-grid charging stations. This work aims, therefore, at investigating this last aspect, by evaluating the performance of an internal combustion engine fueled with methanol for stationary applications, in order to fulfill the potential demand of an on off-grid charging station.
Technical Paper

1-D Simulation Model Developed for a General Purpose Engine

2016-11-08
2016-32-0030
In recent years, improvements in the fuel economy and exhaust emission performance of internal combustion engines have been increasingly required by regulatory agencies. One of the salient concerns regarding general purpose engines is the larger amount of CO emissions with which they are associated, compared with CO emissions from automobile engines. To reduce CO and other exhaust emissions while maintaining high fuel efficiency, the optimization of total engine system, including various design parameters, is essential. In the engine system optimization process, cycle simulation using 0-D and 1-D engine models are highly useful. To define an optimum design, the model used for the cycle simulation must be capable of predicting the effects of various parameters on the engine performance. In this study, a model for predicting the performance of a general purpose SI (Spark Ignited) engine is developed based on the commercially available engine simulation software, GT-POWER.
Technical Paper

15 Combustion Characteristics of an Improved Design of a Stratified Charge Spark Ignition Engine

2002-10-29
2002-32-1784
The characteristics of the combustion process in an improved design of a novel spark ignition engine studied by means of Computational Fluid Dynamics are presented. The engine is designed to work at low average combustion temperatures to achieve very low NOx emissions. The engine is a two-stroke, two piston in-line engine. The main combustion occurs in four combustion pre-chambers that have an annular shape with a nozzle on the side facing the cylinder. Fuel is directly injected into the pre-chambers by using high-pressure fuel injectors. A progressive burning process is expected to keep the flame inside the pre-chambers while the fast ejection of combustion products should produce effective mixing with the cold air in the cylinder. This fast dilution should guarantee a temperature drop of the combustion products thus reducing the formation of NOx via a thermal path.
Technical Paper

17 Study on Auto-Ignition and Combustion Completion of n-Butane in a Two-stroke Homogeneous Charge Compression Ignition (HCCI) Engine

2002-10-29
2002-32-1786
Homogeneous Charge Compression Ignition (HCCI) is good method to be higher efficiency and to reduce NOx emission and particular matter together than conventional SI combustion engine. But HCCI depends on chemical reaction of fuel and air mixture. So controlling of ignition timing is difficult, and HCCI is high THC and CO emissions because temperature can't reach the enough temperature to reduce those. In this study, we investigated factor for auto ignition timing and combustion completion on n-Butane/Air mixture by a two-stroke HCCI engine. Auto Ignition temperature are known to be decided by fuel(1), for n-Butane, the temperature was 1150±30K. And as we researched combustion completion from In-cylinder gas temperature, increasing In-cylinder gas temperature caused high combustion efficiency and low THC, CO emissions.
Technical Paper

1941 CFR ROAD DETONATION TESTS - Further Experience with New Methods (Compiled from Report of the Cooperative Fuel Research Committee)

1942-01-01
420122
The cooperative road tests carried out during 1941 have added considerable information and experience to that already existing on the subject of road detonation testing. Extensive data were obtained on the fuel requirements of the 1940 and 1941 models of the three most popular cars. Corresponding data were obtained on the knocking characteristics of current gasolines representing the bulk of the sales volume in various parts of the United States. On account of large variations in octane-number requirement among different cars of the same make - due to differences in ignition timing, combustion-chamber deposit, and other causes - and on account of variations in commercial gasolines, it has been necessary to use statistical methods of analysis in the appraisal of fuel and engine relationships. These methods of analysis have been applied in a number of ways, and have proved very useful.
Technical Paper

2-Cycle Methanol LHR Engine and It's Characteristics

1994-10-01
941910
Methanol fuel was tested in a prototype 2-cycle ceramic heat insulated engine with a swirl chamber. It was found that the 2-cycle ceramic heat insulated engine with a compression ratio of 18:1 could ignite methanol without an auxiliary ignition system and emissions were substantially reduced in the whole load range.
Journal Article

2-D Internal EGR Distribution Measurements in an Engine by Laser-Induced Fluorescence

2013-04-08
2013-01-0556
A novel diagnostic technique named a “Tracer-Producing LIF technique” which enables 2-dimensional measurement of an internal EGR within an engine cylinder, has been developed. The main feature of this technique is the utilization of a fuel additive that does not itself emit an LIF signal by irradiation of UV-light but whose combustion products radiate strong LIF emissions by UV-light irradiation. Internal EGR behaviors can be measured by observing LIF images that are excited by a UV-laser sheet. Firstly, principles of this technique were confirmed and fuel additives were selected. Then, the “Tracer-Producing LIF technique” was applied to an optically accessible single-cylinder gasoline engine in which the entire pent-roof area can be observed from the side of the engine. The internal EGR behaviors were measured through the entire engine cycle, from intake to exhaust.
Technical Paper

3-D Modeling of Conventional and HCCI Combustion Diesel Engines

2004-10-25
2004-01-2964
An investigation of the possibility to extend the 3-dimensional modeling capabilities from conventional diesel to the HCCI combustion mode simulation was carried out. Experimental data was taken from a single cylinder engine operating with early injections for the HCCI and a split-injection (early pilot+main) for the high speed Diesel engine operation. To properly phase the HCCI mode in the experiments, high amounts of cooled EGR and a decreased compression ratio were used. In numerical simulation performed using KIVA3-V code, modified to incorporate the Detailed Chemistry Approach the same conditions were reproduced. Special attention is paid on the analysis of the events leading up to the auto-ignition, which was reasonably well predicted.
Technical Paper

36 Development of a High Performance Small Gas Engine for a Gas Engine Heat Pump

2002-10-29
2002-32-1805
GHP which, is the heat pump system for an air conditioning, is directly driven the compressor by a small gas engine. The NOx was reduced 70% less than a conventional gas engine with improvement of thermal efficiency. The combustion chamber shape using strong squish flow is improved in order that the pattern of a heat release is changed to be suitable. Because the relation between NOx and the thermal efficiency is the trade off relation, the air fuel ratio and the ignition timing must be precisely controlled. Detecting the change of the Pi variation calculated from the engine speed variation can control the air fuel ratio.
Technical Paper

3D Numerical Simulation of Fuel injection and Combustion Phenomena in DI Diesel Engines

1989-02-01
890668
Recently the analysis of air-fuel mixing and combustion has become important under the stringent emissions regulations of diesel engines. In the case of gasoline engines, the KIVA computer program has been developed and used for the analysis of combustion. In this paper, the calculations of combustion phenomena in DI diesel engines are performed by modifying the KIVA program so as to be applicable to multi-hole nozzles and arbitrary patterns of injection rate. The thermophysical and ther-mochemical properties of gasoline are altered to those diesel fuel. In order to investigate the ability of this modified program, the calculations are compared with the experiments on single cylinder engines concerning the pressure, flame temperature and mass change of chemical species in cylinders. Furthermore, the calculation for the heavy duty DI diesel engine is performed with this diesel combustion program.
Technical Paper

3D-CFD Methodologies for a Fast and Reliable Design of Ultra-Lean SI Engines

2022-06-14
2022-37-0006
The continuous pursuit of higher combustion efficiencies, as well as the possible usage of synthetic fuels with different properties than fossil-ones, require reliable and low-cost numerical approaches to support and speed-up engines industrial design. In this context, SI engines operated with homogeneous ultra-lean mixtures both characterized by a classical ignition configuration or equipped with an active prechamber represent the most promising solutions. In this work, for the classical ignition arrangement, a 3DCFD strategy to model the impact of the ignition system type on the CCV is developed using the RANS approach for turbulence modelling. The spark-discharge is modelled through a set of Lagrangian particles, whose velocity is modified with a zero-divergence perturbation at each discharge event, then evolved according to the Simplified Langevin Model (SLM) to simulate stochastic interactions with the surrounding gas flow.
Journal Article

3D-CFD RANS Methodology to Predict Engine-Out Emissions with Gasoline-Like Fuel and Methanol for a DISI Engine

2022-09-16
2022-24-0038
Renewable fuels, such as bio- and e-fuels, are of great interest for the defossilization of the transport sector. Among these fuels, methanol represents a promising candidate for emission reduction and efficiency increase due to its very high knock resistance and its production pathway as e-fuel. In general, reliable simulation tools are mandatory for evaluating a specific fuel potential and optimizing combustion systems. In this work, a previously presented methodology (Esposito et al., Energies, 2020) has been refined and applied to a different engine and different fuels. Experimental data measured with a single cylinder engine (SCE) are used to validate RANS 3D-CFD simulations of gaseous engine-out emissions. The RANS 3D-CFD model has been used for operation with a toluene reference fuel (TRF) gasoline surrogate and methanol. Varying operating conditions with exhaust gas recirculation (EGR) and air dilution are considered for the two fuels.
Technical Paper

55 Development of a Fuel Injection System for High-Performance Motorcycles

2002-10-29
2002-32-1824
In Sports Motorcycles category, fuel injection systems have been employed more popularly in recent years, and we have been also developing motorcycles introducing fuel injection systems in the category of 600cc - 1400cc displacement. Sports Motorcycles need to be controlled in a wide range from idling to over 10000rpm. Better throttle response, high power and low fuel consumption are also required. Therefore, adding to optimizations of inlet system layout, fuel injection amount, injection timing and ignition timing, the authors have applied to some models electric control devices such as SDTV (Dual Throttle Valve System) that controls intake air amount with secondary throttle valve located upstream of primary throttle valve and SET (Exhaust Tuning System) that controls exhaust pressure by opening angle of an exhaust valve installed in an exhaust pipe to improve the torque characteristics.
Technical Paper

A 3D-CFD Methodology for Combustion Modeling in Active Prechamber SI Engines Operating with Natural Gas

2022-03-29
2022-01-0470
Active prechamber combustion systems for SI engines represent a feasible and effective solution in reducing fuel consumption and pollutant emissions for both marine and ground heavy-duty engines. However, reliable and low-cost numerical approaches need to be developed to support and speed-up their industrial design considering their geometry complexity and the involved multiple flow length scales. This work presents a CFD methodology based on the RANS approach for the simulation of active prechamber spark-ignition engines. To reduce the computational time, the gas exchange process is computed only in the prechamber region to correctly describe the flow and mixture distributions, while the whole cylinder geometry is considered only for the power-cycle (compression, combustion and expansion). Outside the prechamber the in-cylinder flow field at IVC is estimated from the measured swirl ratio.
Technical Paper

A 3D-CFD Numerical Approach for Combustion Simulations of Spark Ignition Engines Fuelled with Hydrogen: A Preliminary Analysis

2023-04-11
2023-01-0207
With growing concern about global warming, alternatives to fossil fuels in internal combustion engines are searched. In this context, hydrogen is one of the most interesting fuels as it shows excellent combustion properties such as laminar flame speed and energy density. In this work a CFD methodology for 3D-CFD in-cylinder simulations of engine combustion is proposed and its predictive capabilities are validated against test-bench data from a direct injection spark-ignition (DISI) prototype. The original engine is a naturally aspirated, single cylinder compression ignition (Diesel fueled) unit. It is modified substituting the Diesel injector with a spark plug, adding two direct gas injectors, and lowering the compression ratio to run with hydrogen fuel. A 3D-CFD model is built, embedding in-house developed ignition and heat transfer models besides G-equation one for combustion.
Technical Paper

A CFD Model with Optical Validation on In-cylinder Charge Performances of CAI Engines

2008-04-14
2008-01-0045
Over the past few decades, Homogeneous Charge Compression Ignition (HCCI) or Controlled Auto-Ignition (CAI) if it is fuelled with gasoline type of fuels has shown its potential to overcome the limitations and environmental issue concerns of the Spark Ignition (SI) and Compression Ignition (CI) engines. However, controlling the ignition timing of a CAI engine over a wide range of speeds and loads is challenging. Combustion in CAI is affected by a number of factors; the local temperature, the local composition of the air/fuel mixture, time and to a lesser degree the pressure. The in-cylinder engine charge flow fields have significant influences on these factors, especially the local gas properties, which leads to the influences towards the CAI combustion. In this study, such influences were investigated using a Computational Fluid Dynamics (CFD) engine simulation package fitted with a real optical research engine geometry.
Technical Paper

A Chemical Mechanistic Analysis on Compression Ignition Process of Straight Chain Alkanes

2004-06-08
2004-01-1912
Applicability of detailed chemical kinetic models to HCCI runs in terms of ignition timings and intermediate species composition has been investigated. An existed n-heptane model and its expansion to n-decane established in this study were particularly concerned. Exhaust gas analysis showing transient composition after cool flames indicated that the unmodified n-decane model overestimates fractions of various grade of aldehydes, whereas it represents experimental ignition timings. The aldehyde yield was found to be sensitive to reactions of aldehyde with OH rather than aldehyde formation reactions. Reactions of QOOH decomposition forming HO2 were also suggested as a candidate to be revised for the model improvement on ignition delays.
Technical Paper

A Combustion Correlation for Spark-Ignition Engine Simulation Under Steady and Transient Conditions

1990-09-01
901602
A Spark-ignition combustion correlation is presented that links the fuel burning rate with in-cylinder vaules of temperature, pressure, fuel-air equivalance ratio, speed, ignition timing and residual gas-fraction. The correlation is designed to be used in a multi-cylinder engine simulation to study the influence of manifold, valve, supercharging and turbocharging systems design on performance. It is shown how the correlation permits transient performance predictions for a turbocharged engine.
Technical Paper

A Combustion Model for Homogeneous Charge Natural Gas Rotary Engines

1989-02-01
890328
In previous papers a complete simulation model of the combustion in a gasoline rotary engine has been described. This combustion model, developed at the University of Gent and UMIST (University of Manchester Institute of Science and Technology), is based on a turbulence enhancement factor for the flame in various zones of the combustion chamber. The purpose of this paper is to give a description of the modifications of the model for a homogeneous natural gas rotary engine. The real geometry of the combustion chamber is incorporated In the model. Calculations are executed for different geometries of rotary engines (especially different positions and shapes of the recess in the rotor). Different formulas of the laminar flame speed for natural gas are examined. The turbulent flame speed is calculated with a turbulence factor or with a turbulence intensity factor. A correlation between the engine conditions and the turbulence intensity is proposed.
X