Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

An Experimental Investigation of Alcohol/Diesel Fuel Blends on Combustion and Emissions in a Single-Cylinder Compression Ignition Engine

2016-04-05
2016-01-0738
UV-visible digital imaging and 2D chemiluminescence were applied on a single cylinder optically accessible compression ignition engine to investigate the effect of different alcohol/diesel fuel blends on the combustion mechanism. The growing request for greenhouse gas emission reduction imposes to consider the use of alternative fuels with the aim of both partially replacing the diesel fuel and reducing the fossil fuel consumption. To this purpose, the use of ABE (Acetone-Butanol-Ethanol) fermentation could represent an effective solution. Even if the different properties of alcohols compared to Diesel fuel limit the maximum blend concentration, low blend volume fractions can be used for improving combustion efficiency and exhaust emissions. The main objective of this study was to investigate the effects of the different fuel properties on the combustion evolution within the combustion chamber of a prototype optically accessible compression ignition engine.
Journal Article

Analysis of flame kinematics and cycle variation in a Port Fuel Injection Spark Ignition Engine

2009-09-13
2009-24-0057
This paper reports on the analysis of flame kinematics and cycle variation in port fuel injection (PFI) spark ignition (SI) engine. The engine was equipped with a four-valve head and with an external boost device. Different operating conditions were considered. Cycle-resolved digital imaging was used to investigate flame motion and the effects of an abnormal combustion due to the firing of fuel deposition near the intake valves and on the piston surface. Various algorithms are applied to the acquired images. Coefficients of Proper Orthogonal Decomposition (POD) were computed and used for a statistical analysis of cycle variability. The advantage is that the analysis can be run on a small number of scalar coefficients rather than on the full data set of pixel valued luminosity.
Journal Article

Butanol-Diesel Blend Spray Combustion Investigation by UV-Visible Flame Emission in a Prototype Single Cylinder Compression Ignition Engine

2015-09-06
2015-24-2435
The paper reports the results of an experimental investigation carried out in a prototype optically accessible compression ignition engine fuelled with different blends of commercial diesel and n-butanol. Thermodynamic analysis and exhaust gas measurements were supported by optical investigations performed through a wide optical access to the combustion chamber. UV-visible digital imaging and 2D chemiluminescence were applied to characterize the combustion process in terms of spatial and temporal occurrence of auto-ignition, flame propagation, soot and OH evolution. The paper illustrates the results of the spray combustion for diesel and n-butanol-diesel blends at 20% and 40% volume fraction, exploring a single and double injection strategy (pilot+main) from a common rail multi-jet injection system. Tests were performed setting a pilot+main strategy with a fixed dwell time and different starts of injection.
Technical Paper

Combustion Process Investigation in a Small SI Engine using Optical Diagnostics

2010-10-25
2010-01-2262
Nowadays an elevated number of two, three and four wheels vehicles circulating in the world-wide urban areas is equipped with Port Fuel Injection Spark Ignition (PFI SI) engines. Their technological level is high, but a further optimization is still possible, especially at low engine speed and high load. To this purpose, the scientific community is now focused on deepening the understanding of thermo fluid dynamic phenomena that takes place in this kind of engine: the final purpose is to find key points for the reduction in engine specific fuel consumption and exhaust emissions without a decrease in performance. In this work, the combustion process was investigated in an optically accessible single cylinder PFI SI engine. It was equipped with the head, injection device and exhaust line of a commercial small engine for two-wheel vehicles, it had the same geometrical characteristics in terms of bore, stroke and compression ratio.
Technical Paper

Flame Contour Analysis through UV-Visible Imaging during Regular and Abnormal Combustion in a DISI Engine

2015-04-14
2015-01-0754
Crank angle resolved imaging in the UV-visible spectral range was used to investigate flame front characteristics during normal combustion, surface ignition and light knock conditions. ‘Line of sight’ measurements provided information on local wrinkling: the evaluation was based on a statistical approach, with multiple frames taken at the same crank angle during consecutive cycles. This allowed the results during normal combustion to be representative for the specific operational conditions and to a good degree independent from the effects of cyclic variation. Abnormal combustion on the other hand, was investigated on a cycle-to-cycle basis, given the stochastic nature of such phenomena. The experimental trials were performed at fixed engine speed on an optically accessible direct injection spark ignition (DISI) engine equipped with the cylinder head of a four cylinder 16-valves commercial power unit.
Technical Paper

Fuel Injection Effect on In-cylinder Formation and Exhaust Emission of Particulate from a 4-Stroke Engine for 2-Wheel Vehicles

2010-04-12
2010-01-0354
The small engine for two-wheel vehicles has generally high possibility to be optimized at low speeds and high loads. In these conditions fuel consumption and pollutants emission should be reduced maintaining the performance levels. This optimization can be realized only improving the basic knowledge of the thermo-fluid dynamic phenomena occurring during the combustion process. It is known that, during the fuel injection phase in PFI SI engines, thin films of liquid fuel can form on the valves surface and on the cylinder walls. Successively the fuel films interact with the intake manifold and the combustion chamber gas flow. During the normal combustion process, it is possible to achieve gas temperature and mixture strength conditions that lead to fuel film ignition. This phenomenon can create diffusion-controlled flames that can persist well after the normal combustion event. These flames induce the emission of soot and unburned hydrocarbons.
Technical Paper

High Spatial Resolution Visualization and Spectroscopic Investigation of the Flame Front Propagation in the Combustion Chamber of a Scooter Engine

2010-04-12
2010-01-0351
The match between the increasing performance demands and stringent requirements of emissions and fuel consumption reduction needs a strong evolution in the 2-wheel vehicle technology. In particular many steps forward should be taken for the optimization of modern small motorcycle and scooter at low engine speeds and low temperature start. To this aim, the detailed understandings of thermal and fluid-dynamic phenomena that occur in the combustion chamber are fundamental. In this work, experimental activities were realized in the combustion chamber of a single-cylinder 4-stroke optical engine. The engine was equipped with a four-valve head of a commercial scooter engine. High spatial resolution imaging was used to follow the flame kernel growth and flame front propagation. Moreover, the effects of an abnormal combustion due to firing of fuel deposition near the intake valves and on the piston surface were investigated.
Technical Paper

Impact of Cooled EGR on Performance and Emissions of a Turbocharged Spark-Ignition Engine under Low-Full Load Conditions

2019-09-09
2019-24-0021
The stringent worldwide exhaust emission legislations for CO2 and pollutants require significant efforts to increase both the combustion efficiency and the emission quality of internal combustion engines. With this aim, several solutions are continuously developed to improve the combustion efficiency of spark ignition engines. Among the various solutions, EGR represents a well-established technology to improve the gasoline engine performance and the nitrogen-oxides emissions. This work presents the results of an experimental investigation on the effects of the EGR technique on combustion evolution, knock tendency, performance and emissions of a small-size turbocharged PFI SI engine, equipped with an external cooled EGR system. Measurements are carried out at different engine speeds, on a wide range of loads and EGR levels. The standard engine calibration is applied at the reference test conditions.
Technical Paper

Impact of Ethanol-Gasoline Port Injected on Performance and Exhaust Emissions of a Turbocharged SI Engine

2018-04-03
2018-01-0914
This paper presents results of an experimental investigation on a flexible port dual fuel injection using different ethanol to gasoline mass fractions. A four stroke, two cylinder turbocharged SI engine was used for the experiments. The engine speed was set at 3000 rpm, tests were carried out at medium-high load and two air-fuel-ratio. The initial reference conditions were set running the engine, fueled with full gasoline at the KLSA boundary, in accordance with the standard ECU engine map. This engine point was representative of a rich mixture (λ=0.9) in order to control the knock and the temperature at turbine inlet. The investigated fuels included different ethanol-gasoline mass fractions (E10, E20, E30 and E85), supplied by dual injection within the intake manifold. A spark timing sweep, both at stoichiometric and lean (λ=1.1) conditions, up to the most advanced one without knock was carried out.
Technical Paper

In-Cylinder Spectroscopic Measurements of Combustion Process in a SI Engine Fuelled with Butanol-Gasoline Blend

2013-04-08
2013-01-1318
In-cylinder optical diagnostic was applied to study butanol-gasoline blend combustion in a SI engine. Spark timing and fuel injection mode were changed to work in normal and knocking conditions. The experiments were realized in a single-cylinder ported fuel injection SI engine with an external boosting device. The engine worked like-stoichiometric mixture at 2000 rpm, medium boosting and wide open throttle. UV-visible natural emission spectroscopy allowed to follow the formation and the evolution of the main compounds and radical species that characterize the combustion process from the spark ignition until the exhaust. Particular interest was devoted to OH and CO₂* evolution, and to the spectral evidence of soot precursors due to fuel deposits burning. OH resulted the best marker for combustion both in normal and abnormal conditions.
Technical Paper

Investigation of Liquid Lignin-Methanol Blends under Realistic Two-Stroke Marine Engines Conditions

2023-08-28
2023-24-0085
With a view to reducing the environmental impact of fossil fuels, advanced lignin-based biofuels could provide a valuable contribute, since lignin is the most abundant biopolymer on earth after cellulose. However, its thermophysical properties would hamper its use as a pure fuel. In this work we investigated the combustion behavior of sprays of a liquid lignin-methanol blend and evaluated its potential as a low-carbon marine fuel for large two-stroke engines. To this end, an experimental campaign was conducted in an optically accessible combustion chamber whose main dimensions correspond to those of a single cylinder for large two-stroke engines. The chamber is provided with optical accesses for optical diagnostics of the combustion process. The combustion of the mixture was ignited using a diesel pilot jet as the ignition source. Two marine injectors are mounted in the chamber, namely “main” and “pilot” injectors.
Journal Article

Optical Diagnostics of the Pollutant Formation in a CI Engine Operating with Diesel Fuel Blends

2011-06-09
2011-37-0003
To meet the future stringent emission standards, innovative diesel engine technology, exhaust gas after-treatment, and clean alternative fuels are required. Oxygenated fuels have showed a tendency to decrease internal combustion engine emissions. In the same time, advanced fuel injection modes can promote a further reduction of the pollutants at the exhaust without penalty for the combustion efficiency. One of the more interesting solutions is provided by the premixed low temperature combustion (LTC) mechanism jointly to lower-cetane, higher-volatility fuels. In this paper, to understand the role played by these factors on soot formation, cycle resolved visualization, UV-visible optical imaging and visible chemiluminescence were applied in an optically accessed high swirl multi-jets compression ignition engine. Combustion tests were carried out using three fuels: commercial diesel, a blend of 80% diesel with 20% gasoline (G20) and a blend of 80% diesel with 20% n-butanol (BU20).
Technical Paper

Optical Investigation of the Effect on the Combustion Process of Butanol-Gasoline Blend in a PFI SI Boosted Engine

2011-09-11
2011-24-0057
The addition of alcohol to conventional hydrocarbon fuels for a spark-ignition engine can increase the fuel octane rating and the power for a given engine displacement and compression ratio. In this work, the influence of butanol addition to gasoline was investigated. The experiments were performed in an optical ported fuel injection single-cylinder SI engine with an external boosting device. The engine was equipped with the head of a commercial SI turbocharged engine having the same geometrical specifications (bore, stroke and compression ratio). The effect of a blend of 20% of n-butanol and 80% of gasoline (BU20) on in-cylinder combustion process was investigated by cycle-resolved visualization. The engine worked at low speed, medium boosting and wide open throttle. Changes in spark timing and fuel injection phasing were considered. Comparisons between the flame luminosity and the combustion pressure data were performed.
Technical Paper

Optical Properties Investigation of Alternative Fuels Containing Carbon-Based Nanostructures

2014-10-13
2014-01-2765
Liquids with stable suspensions of nanoscale materials are defined as nanofluids. As reported in recent scientific literature, a very small amount of suspended nanostructures has the potential to enhance the thermo physical, transport and radiative properties of the base fluid. One of the main applications of this technology is in the field of combustion and fuels. In fact, adding nanomaterials (such as metals, oxides, carbides, nitrides, or carbon-based nanostructures) to liquid fuels is able to enhance ignition and combustion. The focus of this research is to gain a fundamental understanding of the characteristics of a nanofluid fuel prepared using carbon nanoparticles (CNPs) and multi-walled carbon nanotubes (MWCNTs) dispersed in butanol. This study starts with the investigation of the optical properties of the mixtures. The transmission spectra of the nanofluids are measured in a wide wavelength range from UV (250 nm) to near IR (800 nm).
Technical Paper

Plasma Assisted Ignition Effects on a DISI Engine Fueled with Gasoline and Butanol under Lean Conditions and with EGR

2016-04-05
2016-01-0710
Considering the generalized diversification of the energy mix, the use of alcohols as gasoline replacement is proposed as a viable option. Also, alternative control strategies for spark ignition engines (SI) such as lean operation and exhaust gas recirculation (EGR) are used on an ever wider scale for improving fuel economy and reducing the environmental impact of automotive engines. In order to increase the stability of these operating points, alternative ignition systems are currently investigated. Within this context, the present work deals about the use of plasma assisted ignition (PAI) in a direct injection (DI) SI engine under lean conditions and cooled EGR, with gasoline and n-butanol fueling. The PAI system was tested in an optically accessible single-cylinder DISI engine equipped with the head of a commercial turbocharged power unit with similar geometrical specifications (bore, stroke, compression ratio).
Technical Paper

UV-Visible Imaging and Natural Emission Spectroscopy of Premixed Combustion in High Swirl Multi-Jets Compression Ignition Engine Fuelled with Diesel-Gasoline Blend

2012-09-10
2012-01-1723
One promising approach to reduce pollutants from compression ignition engines is the Partially-Premixed- Combustion in which engine out emissions can be reduced by promoting mixing of fuel and air prior to auto-ignition. A great interest for a premixed combustion regime is the investigation on fuels with different reactivity by blending diesel with lower cetane number and higher volatility fuels. In fact, fuels more resistant to auto-ignition give longer ignition delay that may enhance the fuel/air mixing prior to combustion. During the ignition delay period, the fuel spray atomizes into small droplets, vaporizes and mixes with air. As the piston moves towards TDC, as soon as the mixture temperature reaches the ignition point, instantaneously some pre-mixed amount of fuel and air ignites. The balance of fuel that does not burn in premixed combustion is consumed in the rate-controlled combustion phase, also known as diffusion combustion.
Journal Article

Water Injection: a Technology to Improve Performance and Emissions of Downsized Turbocharged Spark Ignited Engines

2017-09-04
2017-24-0062
Knock occurrence and fuel enrichment, which is required at high engine speed and load to limit the turbine inlet temperature, are the major obstacles to further increase performance and efficiency of down-sized turbocharged spark ignited engines. A technique that has the potential to overcome these restrictions is based on the injection of a precise amount of water within the mixture charge that can allow to achieve important benefits on knock mitigation, engine efficiency, gaseous and noise emissions. One of the main objectives of this investigation is to demonstrate that water injection (WI) could be a reliable solution to advance the spark timing and make the engine run at leaner mixture ratios with strong benefits on knock tendency and important improvement on fuel efficiency.
X