Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Combustion Observation of OSKA-DH Diesel Engine by High-Speed Photography and Video System

1996-05-01
961159
The OSKA-DH diesel engine employed a unique system (hereafter called OSKA system) which is composed of a single-hole fuel injector, an impinging disk and a re-entrant type combustion chamber. This study is concerned with the combustion observation of both OSKA-DH diesel engine and conventional DI diesel engine by the high-speed photography and video system. This video system enables us to take combustion photographs under the warm-up condition of the engine. From the observation of those photographs, the OSKA-DH engine shows the shorter ignition delay compared with a DI diesel engine and the combustion flame of OSKA-DH diesel engine are concentrated in the center of the combustion chamber and a relatively monotonous flame intensity are observed. THE AUTHORS HAVE DEVELOPED a new type of Direct Injection Stratified Charge Engine called “Direct Fuel Injection Impingement Diffusion Stratified Charge System” (hereafter called OSKA System).
Technical Paper

Development of Low NOx Emission Diesel Engine by Impingment of Fuel Jet

1992-09-01
921645
This study is concerned with development of a new type of Diesel engine by impingement of fuel jet. The impinging part is installed on the cylinder head (OSKA-DH), against which the fuel jet is injected to spread and form fuel-air mixture. As a fundamental study on the mixture formation process, the observation of the impinged fuel jet was studied by using a pressurized vessel. High-speed combustion photographs of the OSKA and DI Diesel engine were also taken by using the experimental transparent engine. A single cylinder 4 stroke cycle prototype OSKA-DH engine (ø 118 x 108 mm) was developed. Pintle type single hole fuel injector is used and relatively low opening pressure of 15.3 MPa is employed. The re-entrant type combustion chamber and relatively high compression ratio of 20.4: 1 are employed. Experiments with a single cylinder proto-type engine showed that the lower NOx and smoke emissions compared with the conventional DI diesel engine.
Technical Paper

Development of OSKA-DH Diesel Engine Using Fuel Jet Impingement and Diffusion Investigation of Mixture Formation and Combustion

1994-03-01
940667
This study is concerned with development of a new type of diesel engine using the fuel jet impingement (OSKA-DH). Simultaneous reduction of the NOx and smoke emission were demonstrated with single cylinder prototype OSKA-DH engine. As a fundamental study on the mixture formation process, the observation of impinged fuel spray was studied by using a pressurized constant volume vessel. The high-speed combustion photographs of both re-entrant and open type combustion chamber were also taken by using the experimental transparent engine. From the observation of pressurized vessel and high-speed combustion photographs, the mixture formation and combustion was strongly affected by the squish flow velocity. The short ignition delay and faster combustion were observed by the re-entrant type combustion chamber because of high squish speed.
Technical Paper

Direct Injection Stratified Charge Engine by Impingement of Fuel Jet (OSKA)-Performance and Combustion Characteristics

1990-02-01
900608
A direct injection stratified charge engine using New Mixture Formation Technology (OSKA) has been developed. Experiments on a single cylinder engine, with methanol and gasoline fuels showed the following results: 1) With methanol, the maximum IMEP was 1.3 MPa and the best indicated thermal efficiency was 46 %. 2) With gasoline, the maximum IMEP was 1.16 MPa and the best indicated thermal efficiency was 43 %. Analysis of the cylinder pressure diagram showed the following results: 1) High indicated thermal efficiency was observed by low time loss. 2) A relatively short combustion duration was observed even if the engine was operated with an overall lean fuel-air mixture in the part-load condition. This fact suggests that a stratified charge was attained. 3) From observation of the heat release rate,it will be predicted that combustion is characterized by flame propagation.
Technical Paper

Investigation of Particulate Formation of DI Diesel Engine with Direct Sampling from Combustion Chamber

1997-10-01
972969
This paper is concerned with the formation of Particulate Matter (PM) in direct-injection (DI) diesel engines. A system featuring an electromagnetically actuated sampling valve was used for sampling of gas directly from the combustion chamber. The concentrations of total particulate matter (TPM) and of its two components, the Soluble Organic Fractions (SOF) and the Insoluble Fractions (ISF), were determined at different locations in the combustion chamber at different sampling times (different crank angles). High concentrations of SOF were found at sampling positions along the spray flame axis. The concentrations of SOF and ISF were higher at sampling positions close to the wall than away from the wall. The results suggest that SOF formation is significantly affected by wall quenching. Also, the PM concentrations were much higher in the combustion chamber than in the exhaust.
Technical Paper

New Type of Diesel Engine by Impingement of Fuel Jet (OSKA-D)

1990-09-01
901618
The new type of Diesel combustion engine has been developed. The new Idea Incorporates an impingement part in the central piston cavity. The fuel jet is injected against the impingement part, spreads and form fuel-air mixture. Single hole fuel injection nozzle is used and the relatively low opening pressure is needed. Intake air swirl is not needed. The re-entrant type combustion chamber is employed to get a relatively strong squish speed. Experimental with single cylinder 4 stroke prototype test engine showed that the brake mean effective pressure was 0.82 MPa and the maximum net specific fuel consumption was 220 g/kW.h. The NOx and smoke emissions was reduced compared with the conventional DI Diesel engine. The authors have developed a new type of Direct Injection Stratified Charge SI engine called “Direct Fuel Injection Impingement Diffusion Stratified Charge System” (hereafter called OSKA).
Technical Paper

Particulate Emission Characteristics from an Impingement Diffusion Direct Injection Diesel Engine

1994-10-01
942047
A new mixture formation and combustion process for reducing both emissions and fuel consumption has been developed, where the fuel impinges onto the impinging surface and spreads into the free space, named the OSKA process. A single cylinder engine particulate emission test was conducted with full flow dilution tunnel. The OSKA process shows lower TPM (total particulate matter) emission than the conventional DI diesel at the corresponding operating condition. ISF(insoluble fractions) and SOF(soluble organic fraction) are lower than DI diesel's. Correlation between SOF and THC of OSKA engine is, however different from that of conventional DI diesel. OSKA emits lower THC than conventional DI diesel does at the same SOF emission. This is because the wall quenching effect is smaller in OSKA than in conventional DI diesel. A NEW MIXTURE FORMATION and combustion technology, impinging diffusion one named OSKA, has been developed by the authors.
Technical Paper

Premixed Fuel Effect on Ignition and Combustion of Dual Fuel Compression Ignition Engine

2015-09-01
2015-01-1789
Effects of chemical reaction characteristics of premixed fuel were experimentally studied in a dual fuel compression ignition engine using port injection (PI) of gasoline-like component and direct injection (DI) of diesel fuel. Octane number of port injection fuels, direct injection timing and injection amount ratio between PI and DI were swept to assess the interaction between chemical reaction and mixture distribution in a combustion chamber. Chemical kinetic study using multi-zone modeling was also performed in order to explain experimental results under quiescent condition.
Technical Paper

Study on Impinging Diffusion DI Diesel Engine - Numerical Study on Effect of Impinging Part on In-Cylinder Flow -

2003-05-19
2003-01-1780
The effects of the spray impinging part on the in-cylinder airflow were numerically analyzed in the combustion chamber of the impinging diffusion direct injection diesel engine using KIVA-3 code. KIVA-3 code was enhanced to cater the impinging part as an internal obstacle by adopting the virtual droplet method, which is relatively easy to implement. Numerical result shows that the turbulence generation is promoted by the impinging part and is transformed by the squish flow into the piston cavity. The secondary flow is generated beneath the impinging part as well. The secondary flow area increases as the distance between top surface of the impinging part and bottom surface of the cylinder cover increases.
X