Refine Your Search

Topic

Search Results

Technical Paper

A Quasi-Dimensional Model for Prediction of In-Cylinder Turbulence and Tumble Flow in a Spark-Ignited Engine

2018-04-03
2018-01-0852
Improving fuel efficiency and emission characteristics are significant issues in engine research. Because the engine has complex systems and various operating parameters, the experimental research is limited by cost and time. One-dimensional (1D) simulation has attracted the attention of researchers because of its effectiveness and relatively high accuracy. In a 1D simulation, the applied model must be accurate for the reliability of the simulation results. Because in-cylinder turbulence mainly determines the combustion characteristics, and mean flow velocity affects the in-cylinder heat transfer and efficiency in a spark-ignited (SI) engine, a number of sophisticated models have been developed to predict in-cylinder turbulence and mean flow velocity. In particular, tumble is a significant factor of in-cylinder turbulence in SI engine.
Technical Paper

An Experimental Investigation of In-Cylinder Flow Motion Effect on Dual-Fuel Premixed Compression Ignition Characteristics

2020-04-14
2020-01-0306
The combustion process using two fuels with different reactivity, known as dual-fuel combustion or RCCI is mainly studied to reduce emissions while maintaining thermal efficiency compared to the conventional diesel combustion. Many studies have proven that dual-fuel combustion has a positive prospect in future combustion to achieve ultra-low engine-out emissions with high indicated thermal efficiency. However, a limitation on high-load expansion due to the higher maximum in-cylinder pressure rise rate (mPRR) is a main problem. Thus, it is important to establish the operating strategy and study the effect of in-cylinder flow motion with dual-fuel combustion to achieve a low mPRR and emissions while maintaining high-efficiency. In this research, the characteristics of gasoline-diesel dual-fuel combustion on different hardware were studied to verify the effect of the in-cylinder flow motion on dual-fuel combustion.
Technical Paper

An Experimental Investigation of Injection and Operating Strategies on Diesel Single Cylinder Engine under JP-8 and Dual-Fuel PCCI Combustion

2015-04-14
2015-01-0844
The alternative fuel jet propellant 8 (JP-8, NATO F-34) can be used as an auto-ignition source instead of diesel. Because it has a higher volatility than diesel, it provides a better air-fuel premixing condition than a conventional diesel engine, which can be attributed to a reduction in particulate matter (PM). In homogeneous charged compression ignition (HCCI) or dual-fuel premixed charge compression ignition (PCCI) combustion or reactivity controlled compression ignition (RCCI), nitrogen oxides (NOx) can also be reduced by supplying external exhaust gas recirculation (EGR). In this research, the diesel and JP-8 injection strategies under conventional condition and dual-fuel PCCI combustion with and without external EGR was conducted. Two tests of dual-fuel (JP-8 and propane) PCCI were conducted at a low engine speed and load (1,500 rpm/IMEP 0.55 MPa). The first test was performed by advancing the main injection timing from BTDC 5 to 35 CA to obtain the emissions characteristics.
Technical Paper

An Experimental Study on the Knock Mitigation Effect of Coolant and Thermal Boundary Temperatures in Spark Ignited Engines

2018-04-03
2018-01-0213
Increasing compression ratio is essential for developing future high-efficiency engines due to the intrinsic characteristics of spark-ignited engines. However, it also causes the unfavorable, abnormal knocking phenomena which is the auto-ignition in the unburned end-gas region. To cope with regulations, many researchers have been experimenting with various methods to suppress knock occurrence. In this paper, it is shown that cooling the combustion chamber using coolants, which is one of the most practical methods, has a strong effect on knock mitigation. Furthermore, the relationship between thermal boundary and coolant temperatures is shown. In the beginning of this paper, knock metrics using an in-cylinder pressure sensor are explained for readers, even though entire research studies cannot be listed due to the innumerableness. The coolant passages for the cylinder head and the liner were separated to examine independent cooling strategies.
Technical Paper

Analysis of Cyclic Variation and the Effect of Fuel Stratification on Combustion Stabilityin a Port Fuel Injection (PFI) CAI Engine

2009-04-20
2009-01-0670
CAI engine is well known to be advantageous over conventional SI engines because it facilitates higher engine efficiency and lower emission (NOx and smoke). However, its limited operation range, large cyclic variation, and difficulty in heat release control are still unresolved obstacles. Previous studies showed that a high load range of the CAI engine is limited mainly by the combustion noise caused by a stiff pressure rise (knock), and that a low load range is also limited by the combustion instability caused by the high dilution of residual gas. In this study, the characteristics of each cycle were analyzed to find the cause of the cycle variation at the high load limit of CAI operation. Moreover, to improve combustion stability, we tested the in-cylinder fuel stratification by applying nonsymmetrical fuel injection to the intake port. Experiments were performed on a PFI single cylinder research engine equipped with dual CVVT and low lift (2 mm) cam shaft with NVO strategy.
Technical Paper

Analysis of the Correlation between Flow and Combustion Characteristics in Spark-Ignited Engine

2021-04-06
2021-01-0463
As global emission standards are becoming more stringent, it is necessary to increase thermal efficiency through the high compression ratio in spark-ignited engines. Various studies are being conducted to mitigate knocking caused by an increased compression ratio, which requires an understanding of the combustion phenomena inside the combustion chamber. In particular, the in-cylinder flow is a major factor affecting the entire combustion process from the generation to the propagation of flames. In the field of spark-ignited engine research, where interest in the concept of lean combustion and the expansion of the EGR supply is increasing, flow analysis is essential to ensure a rapid flame propagation speed and stable combustion process. In this study, the flow around the spark plug was measured by the Laser Doppler Velocimetry system, and the correlation with combustion in spark-ignited engines was analyzed.
Technical Paper

Development of Engine Control Using the In-Cylinder Pressure Signal in a High Speed Direct Injection Diesel Engine

2011-04-12
2011-01-1418
Emissions regulations are becoming more severe, and they remain a principal issue for vehicle manufacturers. Many engine subsystems and control technologies have been introduced to meet the demands of these regulations. For diesel engines, combustion control is one of the most effective approaches to reducing not only engine exhaust emissions but also cylinder-by-cylinder variation. However, the high cost of the pressure sensor and the complex engine head design for the extra equipment are stressful for the manufacturers. In this paper, a cylinder-pressure-based engine control logic is introduced for a multi-cylinder high speed direct injection (HSDI) diesel engine. The time for 50% of the mass fraction to burn (MFB50) and the IMEP are valuable for identifying combustion status. These two in-cylinder quantities are measured and applied to the engine control logic.
Technical Paper

Development of a Vehicle System Model for the First Medium- and Heavy-Duty Commercial Vehicle Fuel Efficiency Standards in Korea

2015-09-29
2015-01-2774
To properly respond to demands to reduce national energy consumption and meet greenhouse gas emission targets based on environment policy, the Ministry of Trade, Industry, and Energy of Korea formed a research consortium consisting of government agencies and academic and research institutions to establish the first fuel efficiency standards for medium- and heavy-duty (MHD) commercial vehicles. The standards are expected to be introduced in 2017 as Phase 1 of the plan and will regulate trucks with a gross vehicle weight in excess of 3.5 tons and buses with a carrying capacity of more than 16 persons. Most MHD commercial vehicles are custom-made and manufactured in diversified small-quantity batch production systems for commercial or public use, resulting in difficulties in utilizing mandatory vehicle tests for fuel efficiency evaluations.
Technical Paper

Emission Reduction using a Close Post Injection Strategy with a Modified Nozzle and Piston Bowl Geometry for a Heavy EGR Rate

2012-04-16
2012-01-0681
As EURO-6 regulations will be enforced in 2014, the reduction of NOx emission while maintaining low PM emission levels becomes an important topic in current diesel engine research. EGR is the most effective way to reduce the NOx emission because EGR has a dilution and thermal effect as a means to reduce the oxygen concentration and combustion temperature. Although EGR is useful in reducing the NOx emission, it suffers from a higher level of CO and THC emissions, which indicates a low combustion efficiency and poor fuel consumption. Therefore, in this research, a close post injection strategy, which is implemented using main injection and post injection, is introduced to improve combustion efficiency and to reduce PM emission under a high EGR rate. In addition, a modified hardware configuration using a double-row nozzle and a two-staged piston bowl geometry is adapted to improve the effect of the close post injection.
Technical Paper

Enhancing Performance and Combustion of an LPG MPI Engine for Heavy Duty Vehicles

2002-03-04
2002-01-0449
An LPG engine for heavy duty vehicles has been developed using liquid phase LPG injection (hereafter LPLI) system, which has regarded as as one of next generation LPG fuel supply systems. In this work the optimized piston cavities were investigated and chosen for an LPLI engine system. While the mass production of piston cavities is considered, three piston cavities were tested: Dog-dish type, bathtub type and top-land-cut bathtub type. From the experiments the bathtub type showed the extension of lean limit while achieving the stable combustion, compared to the dog-dish type at the same injection timing. Throughout CFD analysis, it was revealed that the extension of lean limit was due to an increase of turbulence intensity by the enlarged crevice area, and the enlargement of flame front surface owing to the shape of the bathtub piston cavity compared to that of the dog-dish type.
Journal Article

Fuel Economy Research on Series-Type HEV Intracity Buses with Different Traction Motor Capacity Combinations

2012-04-16
2012-01-1035
Research on HEV (hybrid electric vehicle) intracity buses has become a topic of interest because the well-known service routes of intracity buses and the frequent stop/go pattern make the energy management of the vehicle straightforward. Thus, the energy flow and the energy management of the intracity bus have been studied extensively in order to improve fuel economy. However, the HEV buses that have been studied previously were equipped with a single traction motor or with dual motors with the same capacity for the convenience of the equipment without considering the motoring or generating efficiency of the traction motor. Therefore, the energy flow from the engine/generator unit to the traction motor that has been optimized by many kinds of energy distribution strategies could not be transferred to the wheels in the most efficient manner. This paper investigates this aspect of the energy flow.
Technical Paper

Modeling of Unburned Hydrocarbon Oxidation in Engine Conditions using Modified One-step Reaction Model

2007-08-05
2007-01-3536
Modeling of unburned hydrocarbon oxidation in an SI engine was performed in engine condition using modified one-step oxidation model. The new one-step equation was developed by modifying the Arrhenius reaction rate coefficients of the conventional one-step model. The modified model was well matched with the results of detailed chemical reaction mechanism in terms of 90 % oxidation time of the fuel. In this modification, the effect of pressure and intermediate species in the burnt gas on the oxidation rate investigated and included in developed one-step model. The effect of pressure was also investigated and included as an additional multiplying factor in the reaction equation. To simulate the oxidation process of piston crevice hydrocarbons, a computational mesh was constructed with fine mesh density at the piston crevice region and the number of cell layers in cylinder was controlled according to the motion of piston.
Technical Paper

New Index for Diagnosis of Abnormal Combustion Using a Crankshaft Position Sensor in a Diesel Engine

2019-04-02
2019-01-0720
Most research of internal combustion engine focuses on improving the fuel economy and reducing exhaust emissions to satisfy regulations and marketability. Engine combustion is a key factor in determining engine performance. Generally, engine operating parameters are optimized for the best performance and less exhaust emissions. However, abnormal combustion results in engine conditions that are far from an optimized operation. Abnormal combustion, including a misfire, can happen for a variety of reasons, such as superannuated vehicles, extreme changes in the driving environment, etc. Abnormal combustion causes serious deterioration of not only noise, vibration and harshness (NVH), but also the fuel economy and exhaust emission. NVH stands for unwanted noise, vibration and harshness from the vehicle. The misfiring especially deteriorates vehicle comfortability. Abnormal combustion at one cylinder breaks the exciting force balance between cylinders and causes unexpected vibration.
Technical Paper

Numerical Analysis on the Effect of Piston Bowl Geometry in Gasoline-Diesel Dual-Fuel Combustion

2019-04-02
2019-01-1164
As emissions regulations become stricter, a variety of advanced combustion concepts that can reduce emissions with a higher thermal efficiency have been suggested. Dual-fuel combustion is one of the alternatives that has both premixed and non-premixed combustion characteristics. Knowing the effects of the mixture formation in dual-fuel combustion is important because it determines the ignition location and the following combustion phase. Hence, a thorough investigation on the related factors, such as the engine hardware or fuel spray, is required. Meanwhile, Computational Fluid Dynamics (CFD) is a good technique to visualize the in-cylinder phenomena and enables quantitative investigations into the detailed combustion characteristics. In this paper, a 3-dimensional CFD simulation was used to investigate the effects of the mixture formation in dual-fuel combustion. The combustion model consists of two parts.
Technical Paper

Numerical Investigation of Soot Emission in Direct-Injection Spark-Ignition Engines Using a Detailed Soot Model Framework

2016-04-05
2016-01-0580
The soot emission in direct-injection spark-ignition engines under various operating conditions was numerically investigated in the present study. A detailed soot model was used to resolve the physical soot process that consists of polycyclic aromatics hydrocarbon (PAH) formation and soot particle dynamics. The primary propagating flame in partially-premixed field was described by G-equation model, and the concentrations of burned species as well as PAH behind of the flame front were determined from the laminar flamelet library that incorporates the PAH chemical mechanism. The particle dynamics in post-flame region include nucleation, surface growth, coagulation, and oxidation were modeled by method of moments. To improve the model predictability, a gasoline surrogate model was proposed to match the real fuel properties, and the input of droplet size distribution of fuel spray was obtained from Phase-Doppler Particle Analyzer.
Technical Paper

Numerical Study on Wall Impingement and Film Formation in Direct-Injection Spark-Ignition Condition

2020-04-14
2020-01-1160
Since the amount of emitted CO2 is directly related to car fuel economy, attention is being drawn to DISI (Direct-Injection Spark-Ignition) engines, which have better fuel economy than conventional gasoline engines. However, it has been a problem that the rich air-fuel mixtures associated with fuel films during cold starts due to spray impingement produce particulate matter (PM). In predicting soot formation, it is important to predict the mixture field precisely. Thus, accurate spray and film models are a prerequisite of the soot model. The previous models were well matched with low-speed collision conditions, such as those of diesel engines, which have a relatively high ambient pressure and long traveling distances. Droplets colliding at low velocities have an order of magnitude of kinetic energy similar to that of the sum of the surface tension energy and the critical energy at which the splash occurs.
Technical Paper

Reducing Exhaust HC Emission at SI Engine Using Continuous and Synchronized Secondary Air Injection

2000-06-12
2000-05-0296
The effect of secondary air injection (SAI) on exhaust hydrocarbon (HC) emission has been investigated in a spark-ignition (SI) single cylinder engine operating at steady-state cold condition. Both continuous SAI and synchronized SAI, which corresponds to intermittent secondary air injection to exhaust port, are tested. Oxidation characteristics of HC are monitored with a FID analyzer and exhaust gas temperatures with thermocouples. Effects of exhaust air-fuel ratio (A/F), location of SAI, and engine-A/F have been investigated. Results show that HC reduction rate increases as the location of SAI is closer to the exhaust valve for both synchronized and continuous SAIs. HC emission decreases with increasing exhaust-A/F when exhaust-A/F is rich, and is relatively insensitive when exhaust-A/F is lean. In synchronized SAI, SAI timing has significant effect on HC reduction and exhaust gas temperature. Optimum SAI timing observed is ATDC 100° and 230°.
Journal Article

Spray and Combustion Characteristics of Ethanol Blended Gasoline in a Spray Guided DISI Engine under Lean Stratified Operation

2010-10-25
2010-01-2152
An experimental study was performed to evaluate the effects of ethanol blending on to gasoline spray and combustion characteristics in a spray-guided direct-injection spark-ignition engine under lean stratified operation. The spray characteristics, including local homogeneity and phase distribution, were investigated by the planar laser-induced fluorescence and the planar Mie scattering method in a constant volume chamber. Therefore, the single cylinder engine was operated with pure gasoline, 85 %vol, 50 %vol and 25vol % ethanol blended with gasoline (E85, E50, E25) to investigate the combustion and exhaust emission characteristics. Ethanol was identified to have the potential of generating a more appropriate spray for internal combustion due to a higher vapor pressure at high temperature conditions. The planar laser-induced fluorescence image demonstrated that ethanol spray has a faster diffusion velocity and an enhanced local homogeneity.
Technical Paper

Study of a Stratification Effect on Engine Performance in Gasoline HCCI Combustion by Using the Multi-zone Method and Reduced Kinetic Mechanism

2009-06-15
2009-01-1784
A gasoline homogeneous charged compression ignition (HCCI) called the controlled auto ignition (CAI) engine is an alternative to conventional gasoline engines with higher efficiency and lower emission levels. However, noise and vibration are currently major problems in the CAI engine. The problems result from fast burning speeds during combustion, because in the CAI engine combustion is controlled by auto-ignition rather than the flame. Thus, the ignition delay of the local mixture has to vary according to the location in the combustion chamber to avoid noise and vibration. For making different ignition delays, stratification of temperature or mixing ratio was tested in this study. In charge stratification, which determines the difference between the start of combustion among charges with different properties, two kinds of mixtures with different properties flow into two intake ports.
Technical Paper

Study on the Application of the Waste Heat Recovery System to Heavy-Duty Series Hybrid Electric Vehicles

2013-04-08
2013-01-1455
A waste heat recovery system is applied to a heavy-duty series hybrid electric vehicle. The engine in a series hybrid electric vehicle can operate at steady state for most of the time because the engine and drivetrain are decoupled, providing the waste heat recovery system with a steady state heat source. Thus, it is possible to optimize the waste heat recovery system design while maximizing the amount of useful energy converted in the system. To realize such a waste heat recovery system, the Rankine steam cycle is selected for the bottoming cycle. The heat exchanger is implemented as a quasi-1D simulation model to calculate the accurate quantity of recovered energy and to determine the working fluid state. The optimal geometric characteristics of the heat exchanger and the efficiency are considered according to the working fluid. The Rankine steam cycle model is constructed, and the output power is calculated.
X