Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

A Study of Friction Reduction by ‘Soft Skirt’ Piston

2011-08-30
2011-01-2120
To reduce friction is required to improve engine fuel economy. This study aimed to reduce piston skirt friction, which is a major factor in engine friction. ‘Soft skirt’ is a trendy item in recent gasoline engines, which can improve skirt sliding condition by larger deformation when the piston is pressed to the liner. The effect is confirmed by friction measurement and oil film observation, using prototype pistons. And also one major factor of the effect is clarified that not only side force but also cylinder pressure causes effective deformation of the skirt to create thick oil film at early combustion stroke.
Technical Paper

A Study on Developing MPI Hydrogen ICE over 2MPa BMEP for Medium Duty Vehicles

2023-09-29
2023-32-0037
Hydrogen ICE can achieve carbon neutrality and is adaptable to medium and heavy-duty vehicles, for which electricity is not always a viable option. It can also be developed using high-quality conventional diesel/gasoline engine technology. Furthermore, it allows for the conversion of existing engines to hydrogen ICE, making it highly marketable. The reliability and durability of MPI hydrogen ICE is better than that of DI, and MPI has an advantage over DI in terms of cruising range because the low-pressure injection of hydrogen reduces the remaining hydrogen in the tank. Improving MPI output is, however, an important subject, and achieving this requires suppressing abnormal combustion such as pre-ignition. In this study, an inline four-cylinder 5L turbo-charged diesel engine was converted to a hydrogen engine. Hydrogen injectors were installed in the intake ports and spark plugs were installed instead of diesel fuel injectors.
Technical Paper

A Study on Effects of Low Viscosity Engine Oil and MoDTC on Piston Friction Losses in a DI Diesel Engine

2015-09-01
2015-01-2044
The reduction of friction losses is a subject of central importance in a diesel engine. The piston frictions of low viscosity engine oil and molybdenum dialkyl dithiocarbamate (MoDTC) have been measured by floating liner method. It was found that the low viscosity engine oil lower than 5W-30 is not effective against the reduction of friction mean effective pressure (FMEP) related to the fuel consumption. MoDTC showed a good performance against the reduction of FMEP. In the friction measurement points, the reduction ratio of 10W-30 with MoDTC to 10W-30 was greater than that of 5W-30 to 10W-30.
Technical Paper

A Study on the Feature of Several Types of Floating Liner Devices for Piston Friction Measurement

2019-04-02
2019-01-0177
The friction reduction of a piston/piston-ring assembly is effective for fuel economy of an engine, and a friction measurement method is required for developing low friction pistons, piston-rings and lubricants. Most suitable method for friction measurement for piston assemblies is “floating liner method”. It has load sensors between a floating cylinder liner and cylinder block, and the sensors can detect friction force acting on the liner. Many apparatuses using floating liner method are developed. They are roughly divided to two categories. In one of them, floating liner is supported by load-washers which axis is set parallel to the center line of the cylinder liner. In another type, floating liner is supported by three-component force sensors installed on the side face of the cylinder. In this paper, five types of floating liner devices were compared.
Technical Paper

A Study on the Function of Oil Drain Holes in the Oil Ring Groove of a Piston and Their Effect on Oil Consumption

2019-12-19
2019-01-2360
Clarifying the mechanism of oil transporting upward at around an oil ring of a piston is necessary for calculating engine oil consumption. This study aimed to clarify the function of oil drain holes in the oil ring groove of a piston. The effect of the oil drain holes in the groove on oil consumption was investigated. Also the pressure balance around the oil ring was measured. It was found that the drain holes in the groove lowered oil consumption. It was assumed that lower pressure in the groove with the drain holes caused less oil flow into the third land.
Technical Paper

A Study on the Mechanism of Engine Oil Consumption- Oil Upwards Transport via Piston Oil Ring Gap -

2011-04-12
2011-01-1402
Reduction of oil consumption of engines is required to avoid a negative effect on engine after treatment devices. Engines are required fuel economy for reduction of carbon-dioxide emission, and it is known that reduction of piston frictions is effective on fuel economy. However friction reduction of pistons sometimes causes an increase in engine oil consumption. Therefore reduction of engine oil consumption becomes important subject recently. The ultimate goal of this study is developing the estimation method of oil consumption, and the mechanism of oil upward transport at oil ring gap was investigated in this paper. Oil pressure under the oil ring lower rail was measured by newly developed apparatus. It was found that the piston slap motion and piston up and down motion affected oil pressure rise under the oil ring and oil was spouted through ring-gap by the pressure. The effect of the piston design on the oil pressure generation was also investigated.
Technical Paper

A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines - 3rd Report: Effect of Piston Motion on Piston Skirt Oil Film Behavior

2006-10-16
2006-01-3349
The necessity of the reduction of the lubricating oil consumption of diesel engines has been increasing its importance to reduce the negative effect of exhausted oil on after treatment devices for exhausted gas. The final purpose of the studies is clarifying the mechanism of the oil consumption and developing the method of its estimation. For the basic study, the mechanism of oil film generation on the piston skirt could be explained by hydrodynamic lubrication in our first and second reports [1, 2]. In this paper, the piston skirt was calculated using the measured piston motion to clarify the effect of the piston motion to the piston skirt oil film behavior.
Technical Paper

A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines - 4th Report: The Measurement of Oil Pressure Under the Piston Oil Ring -

2006-10-16
2006-01-3440
Clarifying the mechanism of the oil consumption of engines is necessary for developing its estimation method. Oil moves upwards on the piston to the combustion chamber through ring sliding surfaces, ring backs and ring gaps. The mechanisms of oil upwards transport through the ring gaps are hardly analyzed. In this report, oil pressure just under the oil ring was successfully measured by newly developed method to clarify the oil transport mechanism at the ring gap. It was showed that the generated oil pressure pushed up the oil at the ring gap.
Technical Paper

A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines -1st report: The Effect of the Design of Piston Skirt on Lubricating Oil Consumption-

2005-05-11
2005-01-2169
Decrease of engine lubricating oil consumption is necessary to reduce environmental impact. Usually oil consumption is estimated experimentally at the engine development stage, and it is expensive in terms of both time and cost. Therefore it is essential to develop its calculation method. The purposes of this study are clarifying the mechanism of engine lubricating oil consumption and developing the calculation method for the estimation of oil consumption. In this report, oil film on the piston skirt, which affected on oil volume supplied to the oil ring, was observed. Furthermore the effect of piston skirt design on oil consumption was investigated. Findings showed that the splashed oil on the cylinder liner had much effect on the oil film on the piston skirt hence oil consumption. It was suggested that the splashed oil on the cylinder liner affected on supply oil volume and it should be considered in the calculation of oil consumption.
Technical Paper

A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines -2nd report: Mechanism of Oil Film Generation on Piston Skirt-

2005-05-11
2005-01-2167
The requirement for the reduction of lubricating oil consumption of diesel engines has become increasingly important in reducing the effect of exhausted oil on after treatment devices for exhaust gas. In our first report, findings indicated that piston skirt length affected oil consumption, and they clearly showed that the oil film on the piston skirt should be considered in the calculation for oil consumption. In this report, the mechanism of oil film generation on the piston skirt is investigated. The oil film on the piston skirt is calculated and the effect of piston motion on the oil film region is clarified, i.e., considering the piston rotation around the top of the piston skirt at the anti-thrust side is important for the calculation of the oil film region.
Technical Paper

A Study on the Mechanism of Piston Ring Rotation of an Engine

2023-09-29
2023-32-0033
Engine oil consumption must be reduced because it produces particulate matter in exhaust gases and poisons the catalyst in an aftertreatment system. Oil transport upward via piston ring gaps is one of the factors for oil consumption. It is known that piston rings rotate circumferentially during engine operation, and that oil consumption increases when the ring gaps of multiple piston rings are close to each other. Force acting on a piston ring in the circumferential direction was investigated in a past study [3], and a wave form of the force was measured against the crank angle. Furthermore, the forces were varied according to the measurement position in the circumferential direction. It means that the ring gap tends to stay where the force showed a small value. The force shows a periodic wave form against the crank angle for each cycle, and some parts of the waveform show a correlation with piston slap motion [3].
Journal Article

A study of Measurement for Oil Film at the Bearing of the Small End of Diesel Engine Connecting Rod

2019-12-19
2019-01-2332
Downsizing and slowing down of engine speed reduce mechanical losses and improve fuel economy. However, they exacerbate lubrication condition. The oil film thickness of the bearing of the small end of the connecting rod, which was one of the sliding surfaces with the severest lubrication condition in a diesel engine, was measured in this study to clarify the lubrication condition. Optical fibers were embedded in the bearing, and oil film was measured by means of the laser induced fluorescence method. It was found that oil film thickness was affected combustion gas pressure and distortion of the piston pin.
Technical Paper

Development of a new method to measure the rotational force acting on the piston rings of a gasoline engine

2019-12-19
2019-01-2366
Oil consumption of an engine causes particulate matter, poisoning catalysts and sometimes abnormal combustion like pre-ignition. One of the factors of oil consumption is oil transport via a piston ring-gap. Coincident of ring-gaps at a same position may cause an increase in oil consumption. It was assumed that the rotation of a ring in the circumferential direction is affected by cylinder bore shape, piston motion, distribution of ring tension and so on. The force which caused ring rotation was measured by a newly developed cantilever type of load cell which is set in the ring gap. The force was assumed to be closely related to the piston motion.
Journal Article

Friction Measurement of Al-17%Si Monolithic Cylinder with using Newly Developed Floating Liner Device

2014-11-11
2014-32-0052
The improvement of fuel consumption is the most important issue for engine manufactures from the viewpoint of energy and environment conservation. A piston-cylinder system plays an important role for the reduction of an engine friction. For the improvement of the frictional behavior of the piston-cylinder system, it is beneficial to observe and analyze the frictional waveforms during an engine operation. To meet the above-mentioned demand, frictional waveforms were measured with using the renewed floating liner device. In the newly developed floating liner device, an actual cylinder block itself was used as a test specimen. The measured single cylinder was an aluminum monolithic type made of hypereutectic Al-17%Si alloy using a high pressure die casting process. The combined piston was a light weight forged piston and a DLC coated piston ring was used. For the measurement, 110cc air cooled single cylinder engine was used.
Technical Paper

Measurement of Piston-Skirt Deformation in Engine Operation by Means of Rotating Cylinder with Gap-Sensors

1993-03-01
930717
An unique measurement method was developed for measurement of the piston outer surface during the engine operation. The method was realized by embedding a gap sensor into a cylinder bore and by rotating the cylinder in the circumferential direction. By means of this method, interesting data of skirt deformation of a gasoline engine caused by temperature, pressure and the slap force were obtained.
Technical Paper

Numerical Study on Pressure Generation Mechanism of Oil Film under Oil Control Ring

2019-12-19
2019-01-2361
To reduce oil consumption in reciprocating engines, many studies have been conducted on the mechanism and control of the upward transport of oil from the sump to the combustion chamber through the gap between the cylinder liner and compression rings, which is the main cause of oil consumption. Our research group has previously conducted experiments and numerical analysis elucidating the behavior of oil around the piston skirt and oil ring that forms the entrance for the upward transport of oil and is important in optimizing the amount of oil. However, many uncertainties remain regarding the pressure generation mechanism of oil under the oil ring and clarification is essential to establish a high-accuracy prediction method for oil consumption. In the present study, we demonstrated the pressure generation mechanism of oil under the oil ring by reproducing the flow field in the gap between the liner and piston skirt/underside oil ring using computational fluid dynamics (CFD).
X