Refine Your Search

Search Results

Standard

AEROSPACE STANDARD, GLAND DESIGN, O-RING AND OTHER ELASTOMERIC SEALS

1993-06-11
HISTORICAL
AS4716
This SAE Aerospace Standard provides standardized gland (groove) design criteria and dimensions for elastomeric seal glands for static and dynamic applications. The glands have been specifically designed for applications using SAE AS568 size O-rings at pressures exceeding 1500 psi utilizing one or two anti-extrusion (backup) rings and applications at pressures under 1500 psi without backup rings. The glands have been sized to provide sufficient squeeze for effective sealing while at the same time limiting squeeze to allow satisfactory operation in dynamic applications. While specifically designed for standard size O-rings, these glands are also to be used with other elastomeric seals.
Standard

Aerospace Rod Scraper Gland Design Standard

1999-07-01
HISTORICAL
AS4088B
Gland details are described for rod diameters from 1/4 to 15-1/2 in, inclusive, corresponding to AS568 O-Ring Dash No. sizes -108/-111, -206/-222, -325/-349 and -425/-460.
Standard

Aerospace Rod Scraper Gland Design Standard

2020-11-03
CURRENT
AS4088F
This SAE Aerospace Standard (AS) defines gland details for scrapers for rod diameters from 1/4 to 15-1/2 inch (6.35 to 393.70 mm) inclusive, corresponding to AS568 O-ring Dash No. sizes -108/-111, -206/-222, -325/-349, and -425/-460. The gland details herein allow the use of more stable, efficient, and reliable scraper devices than MS33675 glands.
Standard

Aerospace Rod Scraper Gland Design Standard

2006-03-10
HISTORICAL
AS4088C
This SAE Aerospace Standard (AS) defines gland details for rod diameters from 1/4 to 15-1/2 in. inclusive corresponding to AS568 O-Ring Dash No. sizes -108/-111, -206/-222, -325/-349 and -425/-460. The gland details herein provide more space than MS33675 and sufficient to fit more efficient and reliable excludion devices. Exclusion device configurations are not specified in this document.
Standard

Aerospace Rod Scraper Gland Design Standard

2011-12-19
HISTORICAL
AS4088D
This SAE Aerospace Standard (AS) defines gland details for rod diameters from 1/4 to 15-1/2 in. inclusive corresponding to AS568 O-Ring Dash No. sizes -108/-111, -206/-222, -325/-349 and -425/-460. The gland details herein provide more space than MS33675 and sufficient to fit more efficient and reliable excludion devices. Exclusion device configurations are not specified in this document.
Standard

Aerospace Size Standard for Oversize O-Rings

2019-12-02
CURRENT
AS5798A
This SAE Aerospace Standard (AS) specifies the dimensions, tolerances and size codes (dash numbers) for O-rings with a larger cross-section than those to AS568, for use in glands per MIL-G-5514 where squeeze at low temperature is often insufficient to provide a leak-tight seal.
Standard

Aerospace Size Standard for Oversize O-rings

2013-11-22
HISTORICAL
AS5798
This SAE Aerospace Standard (AS) is applicable to military and commercial aircraft. It specifies the dimensions, tolerances and size codes (dash numbers) for use in glands per MIL-G-5514 where squeeze at low temperature is often insufficient to provide a leak-tight seal. The dimensions and tolerances specified in this standard are suitable for any elastomeric material. This standard should not be used as a part standard, therefore no part numbers like AS5798-001X shall be created. Each dash number, which should be appended to an appropriate drawing or standard number, identifies one size O-ring only. An AS5798 sized O-ring is intended to replace an AS568 sized O-ring of the same dash number. An X suffix is part of the dash number to signify oversize. Temperature limitations of 275 °F (135 °C) and coefficient of thermal expansion of 9.0 × 10-5 unit length per °F (1.6 × 10-4 unit length per °C) were used for swell calculations.
Standard

Anti Blow-By Design Practice for Cap Seals

2013-02-10
HISTORICAL
AIR1243C
This SAE Aerospace Information Report (AIR) provides information on anti blow-by design practice for cap seals. Suggestions for piston cap seal sidewall notch design and other anti blow-by design details are also described. It also includes information on two key investigations based on the XC-142 as part of the text and as Appendix A.
Standard

Anti Blow-By Design Practice for Cap Seals

2018-08-13
CURRENT
AIR1243D
This SAE Aerospace Information Report (AIR) provides information on anti blow-by design practice for cap seals. Suggestions for piston cap seal sidewall notch design and other anti blow-by design details are also described. It also includes information on two key investigations based on the XC-142 as part of the text and as Appendix A.
Standard

Anti Blow-By Design Practice for Cap Seals

2005-04-26
HISTORICAL
AIR1243B
This SAE Aerospace Information Report (AIR) provides information on anti blow-by design practice for cap seals. Suggestions for piston cap seal sidewall notch design and other anti blow-by design details are also described. It also includes information on two key investigations based on the XC-142 as part of the text and as Appendix A.
Standard

Gland Design, Computation of Seal Squeeze and Gland Volume

2013-06-18
CURRENT
ARP4727B
This SAE Aerospace Recommended Practice (ARP) presents two BASIC language computer programs to promote and standardize the computation of installed O-ring cross-section deflection hereafter referred to as "squeeze" and the computation of gland volume. The two programs were written with line numbers and without use of any system specific BASIC commands to allow usage with as many systems as possible with a minimum of editing. The programs support entry of customary U.S. or metric dimensions.
Standard

Gland Design, O-Ring and Other Elastomeric Seals, Static Applications

2022-08-17
CURRENT
AS5857A
This SAE Aerospace Standard (AS) provides standardized gland (groove) design criteria and dimensions for elastomeric seal glands for static applications. The glands have been specifically designed for applications using SAE AS568 size O-rings at pressures exceeding 1500 psi (10.3 MPa) utilizing one or two anti-extrusion (backup) rings and applications at pressures under 1500 psi (10.3 MPa) without backup rings. The glands have been sized to provide increased squeeze as compared to AS4716 for more effective sealing at low temperatures and low seal swell conditions. These glands are not recommended for dynamic use. Primary usage is for static external sealing. The rod dimensions are the same as AS4716. The cylinder bore dimensions are the same as AS4716 except for sizes -001 thru -011 and -104 thru -113.
Standard

Gland Design, O-Ring and Other Seals

2021-11-09
CURRENT
AS4716D
This SAE Aerospace Standard (AS) provides standardized gland (groove) design criteria and dimensions for O-ring seal glands for static and dynamic applications, and other seals.
Standard

Gland Design, O-ring and Other Elastomeric Seals

2011-03-14
HISTORICAL
AS4716B
This SAE Aerospace Standard (AS) provides standardized gland (groove) design criteria and dimensions for elastomeric seal glands for static and dynamic applications. The glands have been specifically designed for applications using SAE AS568 size O-rings, with related class 2 tolerances, at pressures exceeding 1500 psi (10.34 MPa) utilizing one or two anti-extrusion (backup) rings and applications at pressures below 1500 psi (10.34 MPa) without backup rings. The glands have been sized to provide sufficient squeeze for effective sealing while at the same time limiting squeeze to allow satisfactory operation in dynamic applications. While this specification covers the basic design criteria and recommendations for use with standard size O-rings, these glands are also suitable for use with other elastomeric, and polytetrafluoroethylene (PTFE) based seals.
Standard

Gland Design, O-ring and Other Elastomeric Seals

2005-07-21
HISTORICAL
AS4716A
This SAE Aerospace Standard (AS) provides standardized gland (groove) design criteria and dimensions for elastomeric seal glands for static and dynamic applications. The glands have been specifically designed for applications using SAE AS568 size O-rings, with related class 2 tolerances, at pressures exceeding 1500 psi (10,342 kPa) utilizing one or two anti-extrusion (backup) rings and applications at pressures under 1500 psi (10,342 kPa) without backup rings. The glands have been sized to provide sufficient squeeze for effective sealing while at the same time limiting squeeze to allow satisfactory operation in dynamic applications. While this specification covers the basic design criteria and recommendations for use with standard size O-rings, these glands are also suitable for use with other elastomeric, and polytetrafluoroethylene (PTFE) based seals and packings.
Standard

Gland Design, O-ring and Other Elastomeric Seals, Static Applications

2005-03-30
HISTORICAL
AS5857
This SAE Aerospace Standard (AS) provides standardized gland (groove) design criteria and dimensions for elastomeric seal glands for static applications. The glands have been specifically designed for applications using SAE AS568 size O-rings at pressures exceeding 1500 psi (10.3 MPa) utilizing one or two anti-extrusion (backup) rings and applications at pressures under 1500 psi (10.3 MPa) without backup rings. The glands have been sized to provide increased squeeze as compared to AS4716 for more effective sealing at low temperatures and low seal swell conditions. These glands are not recommended for dynamic use. Primary usage is for static external sealing. The rod dimensions are the same as AS4716. The cylinder bore dimensions are the same as AS4716 except for sizes -001 thru -011 and -104 thru -113.
X