Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

Behaviour of a Closed Loop Controlled Air Valve Type Mixer on a Natural Gas Fuelled Engine Under Transient Operation

1995-08-01
951911
Many current aftermarket natural gas conversions of gasoline fuelled spark ignited engines use an air-valve type mixer with closed loop control of the gas pressure. This control is often provided by an electronic integral controller that uses the output from an exhaust gas oxygen (EGO) sensor to control the duty cycle of a solenoid valve. By varying the duty cycle of this fuel control valve (FCV), the average pressure in the low pressure regulator (LPR) reference chamber and thus the gas pressure can be varied. The transient behaviour of these fuel systems is affected mainly by the mechanical response of the gas mixer and the LPR. The electronic controller can provide compensation only after the EGO sensor has detected an air-fuel ratio excursion. The main weaknesses of this type of fuel system seems to be associated with the finite response of the mixer and the LPR and by the use of an airflow dependent vacuum signal strength for control.
Technical Paper

Bluff-Body Stabilized Glow Plug Ignition of a Methanol-Fueled IDI Diesel Engine

1993-03-01
930935
Methanol, in common with other alternative fuels including natural gas and LPG, has autoignition characteristics which are poorly suited for use in compression ignition engines. Some sort of ignition assist has proven to be necessary. Considerable work has been carried out with hot surface (glow plug) ignition. The geometric relationship between the fuel injection nozzle and the glow plug is critical to achieving high efficiency and low emissions. Moreover, it is difficult to establish a single geometry which provides reliable ignition and stable operation over the entire range of engine speeds and loads. The work described in this paper investigated extending the range of operation of a particular glow plug/fuel injection nozzle geometry by placing the glow plug in the wake of a bluff body. Bluff-body flame stabilization is a well-known technique in continuous combustors. Experiments were carried out in a single-cylinder CFR cetane rating engine fueled with methanol.
Technical Paper

Effect of Closed Loop Fuel Control System Characteristics on Emissions from a Natural Gas-Fueled Engine

1993-10-01
932747
Some current aftermarket natural gas closed loop carburetion systems use an integral control strategy to maintain a fuel-air equivalence ratio centered in the peak conversion window of a three-way catalytic converter. Fuel control system performance under steady-state engine operating conditions can be characterized by the time-averaged value of the fuel-air equivalence ratio, the rich and lean excursion limits, and a skewness parameter that represents the non-symmetry of the time varying fuel-air equivalence ratio about the control value (ϕaverage). Using a representative aftermarket feedback control system, the effect of these parameters on the exhaust emissions of a natural-gas fueled four-cylinder engine has been investigated. In addition, the effect of EGO sensor characteristics on control system performance has been examined.
Technical Paper

Effect of Engine Operating Variables and Piston and Ring Parameters on Crevice Hydrocarbon Emissions

1994-03-01
940480
A study was performed to determine the effects of engine operating variables and piston and ring parameters on the crevice hydrocarbon emissions from a spark-ignition engine. Natural gas was used as the test fuel in an effort to isolate crevice mechanisms as the only major source of unburned hydrocarbons in the test engine's exhaust. The largest of the in-cylinder crevices, the piston ring pack crevices, were modified, both in size and accessibility, by altering the piston top land height and the number of piston rings and their end gaps. Each piston and ring configuration was subjected to a series of test sweeps of engine operating variables known to affect exhaust hydrocarbon emissions. None of the physical crevice modifications had any significant effect on the level of the exhaust hydrocarbon emissions, although the cycle-to-cycle repeatability of these emissions, measured with a fast hydrocarbon analyzer, was found to vary between the different configurations.
Technical Paper

Effect of Increasing Compression Ratio in a Light-Duty Natural Gas-Fueled Engine on Efficiency and Emissions

1993-10-01
932746
As a result of CAFE (corporate average fuel economy) requirements, the trend in passenger car engine design is to smaller displacement engines of higher specific output which provide reductions in vehicle driving cycle fuel consumption without an accompanying decrease in maximum power output. Design features such as four valves per cylinder and compact combustion chambers give these engines significantly different combustion characteristics than traditional pushrod OHV (overhead valve) engines. In general, their combustion chambers are fast burning, enabling the use of higher compression ratios without knock on unleaded gasoline. Since fuel consumption decreases with increasing compression ratio, and since natural gas has a substantially higher octane rating than the best unleaded gasoline, it would appear to be desirable to operate with even higher compression ratios in a dedicated natural gas engine.
Technical Paper

Electrically Actuated Injectors for Gaseous Fuels

1989-09-01
892143
Newly legislated exhaust emission standards for heavy duty engines have revived interest in the use of alternative fuels. Fuel substitution is one possible means of reducing emissions sufficiently to comply with the new standards. Two gaseous fuels, natural gas and hydrogen, are among the alternative fuels having the potential to reduce emissions. Since the density of these gases is roughly an order of magnitude smaller than typical liquid fuels, metering devices must be capable of handling correspondingly larger volumes to obtain equivalent energy flows. This need for large volume flows requires substantially larger components. In the case of timed metering devices or injectors, large components and their associated large mass require substantial force to achieve fast actuation. This paper describes the use of a powerful solenoid as an actuator for gaseous injectors. The same principles were used to design injectors for two applications.
Technical Paper

Emissions from Compression Ignition Engines with Animal-Fat-Derived Biodiesel Fuels

2014-04-01
2014-01-1600
Biodiesel and other renewable fuels are of interest due to their impact on energy supplies as well as their potential for carbon emissions reductions. Waste animal fats from meat processing facilities, which would otherwise be sent to landfill, have been proposed as a feedstock for biodiesel production. Emissions from biodiesel fuels derived from vegetable oils have undergone intense study, but there remains a lack of data describing the emissions implications of using animal fats as a biodiesel feedstock. In this study, emissions of NOx, unburned hydrocarbons and particulate matter from a compression ignition engine were examined. The particulate matter emissions were characterized using gravimetric analysis, elemental carbon analysis and transmission electron microscopy. The emissions from an animal fat derived B20 blend were compared to those from petroleum diesel and a soy derived B20 blend.
Technical Paper

Engine Operating Parameter Effects on the Speciated Aldehyde and Ketone Emissions from a Natural Gas Fuelled Engine

1995-10-01
952500
Measurements were taken of the speciated aldehyde and ketone exhaust emissions from a modern four-cylinder engine fuelled with natural gas. The effect on these emissions of varying the engine operating parameters spark timing, exhaust gas recirculation rate, engine speed, and fuel/air equivalence ratio was examined. The influence of these operating parameters on the complete reactivity-weighted emissions with natural gas fuelling is predicted. With stoichiometric fuel/air mixtures, both the total hydrocarbons and formaldehyde emissions declined with increasing exhaust gas temperature and increasing in-cylinder residence time, suggesting that formaldehyde burn-up in the exhaust process largely controls its emissions levels. Closer examination of the aldehyde emissions shows they follow trends more like those of the non-fuel, intermediate hydrocarbon species ethane and acetylene, than like the trends of the fuel components methane and ethane.
Technical Paper

Examination of Charge Dilution with EGR to Reduce NOx Emissions from a Natural Gas-Fuelled 16 Valve DOHC Four-Cylinder Engine

1994-10-01
942006
Charge dilution is commonly used to reduce emissions of nitrogen oxides (NOx) from internal combustion engine exhaust gas. The question of whether to use air or exhaust gas recirculation (EGR) as a charge diluent for the natural gas-fuelled test engine is addressed first. The decision to use EGR is based on the potentially lower NOx and unburned hydrocarbon emissions that could be achieved if a three-way catalyst were applied to the engine. The effect of EGR on the spark advance for maximum brake torque (MBT), NOx, and unburned hydrocarbon emissions is then examined in detail. The effect on fuel efficiency is discussed briefly.
Technical Paper

Fuel Effects on Particulate Matter Emissions Variability from a Gasoline Direct Injection Engine

2018-04-03
2018-01-0355
Particulate matter emissions from gasoline direct injection engines are a concern due to the health effects associated with ultrafine particles. This experimental study investigated sources of particulate matter emissions variability observed in previous tests and also examined the effect of ethanol content in gasoline on particle number (PN) concentrations and particle mass (PM) emissions. FTIR measurements of gas phase hydrocarbon emissions provided evidence that changes in fuel composition were responsible for the variability. Exhaust emissions of toluene and ethanol correlated positively with emitted PN concentrations, while emissions of isobutylene correlated negatively. Exhaust emissions of toluene and isobutylene were interpreted as markers of gasoline aromatic content and gasoline volatility respectively.
Technical Paper

Instantaneous In-Cylinder Hydrocarbon Concentration Measurement during the Post-Flame Period in an SI Engine

1999-10-25
1999-01-3577
Crevices in the combustion chamber are the main source of hydrocarbon (HC) emissions from spark ignition (SI) engines fuelled by natural gas (NG). Instantaneous in-cylinder and engine exhaust port HC concentrations were measured simultaneously using a Cambustion HFR400 fast response flame ionization detector (FRFID) concentrated on the post-flame period. The raw data was reconstructed to account for variation in the FFRID sample transit time and time constant due to fluctuating in-cylinder pressure. HC concentration development during the post-flame period is discussed. Comparison is made of the post-flame in-cylinder and exhaust port HC concentrations under different engine operating conditions, which gives a better understanding of the mechanism by which HC emissions form from crevices in SI engines.
Technical Paper

Investigation of Sulfate Nanoparticulate Formation from a Catalyzed Diesel Particulate Filter on an Engine Fueled with ULSD and a Biodiesel Blend

2009-04-20
2009-01-0691
An off-road direct injection diesel engine equipped with a catalyzed diesel particulate filter (DPF) was subject to two sets of experiments in which two fuels, ultra low sulfur diesel (ULSD) and 20 vol. % biodiesel blend (B20) were compared. In the first set of experiments lubricant oil consumption was measured by sulfur tracing. In the second set of experiments nanoparticle formation downstream of the DPF was assessed. It was found that number concentration of nanoparticles released from the catalyzed DPF depends on fuel type and on engine operating condition and hence the onset of filter regeneration. For low soot loading times B20 fueling produces lower number concentrations, whereas longer soot loading times produce lower number concentrations with ULSD fueling.
Technical Paper

Liquid Propane Injection for Diesel Engines

1987-11-01
872095
Propane is one alternative fuel which is already widely available. Its use as a transporation fuel has largely been confined to spark ignition engines, however. This paper reports on an investigation into liquid propane injection as a means for fueling diesel engines. A single-cylinder CFR cetane rating engine was used to carry out the experimental work. The fuel system was revised to ensure that propane remained liquified in the fuel injection pump and injector. Since propane has a very low cetane number, some means of ignition must be provided. Two means of ignition were evaluated in this investigation, diesel pilot injection and a continuously operating glow plug. Tests were carried out at compression ratios of 19:1, 22:1 and 25:1 and at engine speeds of 1200, 1500 and 1800 rpm for each of the two ignition methods. The results are similar for the same test conditions.
Technical Paper

Performance and Emissions of a Natural Gas-Fueled 16 Valve DOHC Four-Cylinder Engine

1993-03-01
930380
The increasing use of natural gas as a vehicle fuel has generated considerable research activity to characterize the performance and emissions of engines utilizing this fuel. However, virtually all of the results reported have been for pushrod OHV spark ignition engines or SI conversions of heavy-duty diesel engines. Because of the pressure to improve fuel economy imposed by CAFE requirements, passenger cars are increasingly tending toward high specific output, small displacement engines. These engines employ such features as four valves per cylinder and centrally located spark plugs which give them a different dependence on operating variables than traditional pushrod OHV engines. In this study, experiments were carried out with a two-liter four-cylinder Nissan SR20DE engine representative of modern design practice. The engine was operated on gasoline and natural gas at six different loads and three different speeds. Some tests were also done with isooctane.
Technical Paper

Scanning Electron Microscopy and Raman Spectroscopy Studies of ULSD and Biodiesel Soot Loading in a Diesel Particulate Filter

2009-04-20
2009-01-1261
Diesel particulate filters (DPFs) were loaded and fractured to determine the time effect of loading, and loading differences between ULSD and a B20 biodiesel blend. DPFs were loaded in parallel for exposure times of 1, 2, 5 and 10 hours. Scanning electron microscopy and Raman spectroscopy were used to visualize loading and analyze the carbon structure of particulates on the filter substrate. Images of the soot cake were captured and the ‘pore-bridge’ was identified as an important feature in DPF functionality. Raman analysis revealed that the nature of the carbon soot structure did not become increasingly graphitic with loading time; the soot cake was observed to be a disordered, variable feature.
Technical Paper

The Use of Dimethyl Ether as a Starting Aid for Methanol-Fueled SI Engines at Low Temperatures

1988-10-01
881677
Methanol-fueled SI engines have proven to be difficult to start at ambient temperatures below approximately 10°C. The use of dimethyl ether (DME) is proposed to improve the cold starting performance of methanol-fueled SI engines. Tests to evaluate this idea were carried out with a modified single-cylinder CFR research engine having a compression ratio of 12:1. The engine was fueled with combinations of gaseous dimethyl ether and liquid methanol having DME mass fractions of 30%, 40%, 60% and 70%. For comparison, tests were also carried out with 100% methanol and with winter grade premium unleaded gasoline. Overall stoichiometric mixtures were used in all tests. All DME/methanol combinations provided good cold starting behavior down to -15°C, the lowest temperature attainable by the refrigeration system. The engine required approximately 50% fewer cranking cycles to produce the first fired cycle when fueled by the DME/methanol combinations compared to fueling with gasoline.
Technical Paper

Validation Tests for a Fast Response Flame Ionisation Detector for In-Cylinder Sampling Near the Spark Plug

1996-05-01
961201
The air/fuel ratio (AFR) is a key contributor to both the performance and emissions of an automotive engine. Its variation between cylinders - and between engine cycles - is of particular importance, especially during throttle transients. This paper explores the use of a fast flame ionisation detector (FFID) to quantify these rapid changes of in-cylinder composition in the vicinity of the spark gap. While this instrument actually measures fuel concentration, its results can be indicative of the AFR behaviour. Others have used the FFID for this purpose, but the planned test conditions placed special demands on the instrument. These made it prudent to explore the limits of its operating envelope and to validate the experimental technique. For in-cylinder sampling, the instrument must always be insensitive to the large pressure changes over the engine cycle. With the wide range of engine loads of interest here, this constraint becomes even more crucial.
X