Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Application of Electric Vehicle System Design to Grand Prix EV Kart

2011-04-12
2011-01-0353
The renewed interest in electric and hybrid-electric vehicles has been prompted by the drastic rise in oil prices in 2008 and launch of new initiatives by the Federal Government. One of the key issues is to promote the incorporation of electric drivetrain in vehicles at all levels and particularly with emphasis on educational activities to prepare the workforce needed for the near future. Purdue University has been conducting a Grand Prix for over 50 years with Gas-powered Karts. In April 2010, an annual event was initiated to hold an EV Grand Prix where 17 EV Karts participated in the competition. Four of the participating teams comprised of Purdue students in a new graduate course for EV design and fabrication. Using the basic framework of the gas-powered Kart, an electric version was developed as a part of this course. Other participants were also provided with the guidelines and design parameters developed for the course and competition.
Technical Paper

Designing a High Voltage Energy Storage System for a Parallel-Through-The-Road Plug-In Hybrid Electric Vehicle

2013-04-08
2013-01-0557
A parallel-through-the-road (PTTR) plug-in hybrid electric vehicle is being created by modifying a 2013 Chevrolet Malibu. This is being accomplished by replacing the stock 2.4L gasoline engine which powers the front wheels of the vehicle with a 1.7L diesel engine and by placing a high voltage electric motor in the rear of the vehicle to power the rear wheels. In order to meet the high voltage needs of the vehicle created by the PTTR hybrid architecture, an energy storage system (ESS) will need to be created. This paper explains considerations, such as location, structure integrity, and cooling, which are needed in order to properly design an ESS.
Technical Paper

Overview of Hybrid Electric Vehicle Safety and the Potential for Hydrogen Ignition by Static Electricity

2000-04-02
2000-01-1538
Hybrid Electric vehicles (HEVs) and Fuel Cell vehicles (FCVs) are showing promise of success as a commercial product as they are being developed by the industry. It is only prudent to closely consider safety issues for both post-crash and failure (non-crash) scenarios. A review of most relevant technologies being considered for HEVs was performed to identify potential hazard conditions and interactions between systems and sub-systems within these vehicles. Energy storage, propulsion systems and fuel storage were examined for different configurations of such vehicles. It is anticipated that plastics, composites and other nonconductive materials will be used more widely in future cars. This can result in an increased propensity to generate substantial static charge levels. Furthermore, the presence of high-voltage and high-current lines, batteries, electric motors and other components not present in conventional vehicles with alternative fuels or hydrogen justifies this examination.
X