Refine Your Search

Topic

Search Results

Technical Paper

A Comprehensive Powertrain Model to Evaluate the Benefits of Electric Turbo Compound (ETC) in Reducing CO2 Emissions from Small Diesel Passenger Cars

2014-04-01
2014-01-1650
In the last years the automotive industry has been involved in the development and implementation of CO2 reducing concepts such as the engines downsizing, stop/start systems as well as more costly full hybrid solutions and, more recently, waste heat recovery technologies. These latter include ThermoElectric Generator (TEG), Rankine cycle and Electric Turbo Compound (ETC) that have been practically implemented on few heavy-duty application but have not been proved yet as effective and affordable solutions for the automotive industry. The paper deals with the analysis of opportunities and challenges of the Electric Turbo Compound for automotive light-duty engines. In the ETC concept the turbine-compressor shaft is connected to an electric machine, which can work either as generator or motor. In the former case the power can satisfy the vehicle electrical demand to drive the auxiliaries or stored in the batteries.
Journal Article

Acoustic Emission Processing for Turbocharged GDI Engine Control Applications

2015-04-14
2015-01-1622
In the field of passenger car engines, recent research advances have proven the effectiveness of downsized, turbocharged and direct injection concepts, applied to gasoline combustion systems, to reduce the overall fuel consumption while respecting particularly stringent exhaust emissions limits. Knock and turbocharger control are two of the most critical factors that influence the achievement of maximum efficiency and satisfactory drivability, for this new generation of engines. The sound emitted from an engine encloses many information related to its operating condition. In particular, the turbocharger whistle and the knock clink are unmistakable sounds. This paper presents the development of real-time control functions, based on direct measurement of the engine acoustic emission, captured by an innovative and low cost acoustic sensor, implemented on a platform suitable for on-board application.
Technical Paper

Air-Fuel Ratio and Trapped Mass Estimation in Diesel Engines Using In-Cylinder Pressure

2017-03-28
2017-01-0593
The development of more affordable sensors together with the enhancement of computation features in current Engine Management Systems (EMS), makes the in-cylinder pressure sensing a suitable methodology for the on-board engine control and diagnosis. Since the 1960’s the in-cylinder pressure signal was employed to investigate the combustion process of the internal combustion engines for research purposes. Currently, the sensors cost reduction in addition to the need to comply with the strict emissions legislation has promoted a large-scale diffusion on production engines equipment. The in-cylinder pressure signal offers the opportunity to estimate with high dynamic response almost all the variables of interest for an effective engine combustion control even in case of non-conventional combustion processes (e.g. PCCI, HCCI, LTC).
Technical Paper

An Integrated Simulation Methodology of Thermal Management Systems for the CO2 Reduction after Engine Cold Start

2015-04-14
2015-01-0343
The emissions limits of CO2 for vehicles are becoming more stringent with the aim of reducing greenhouse gas emissions and improve fuel economy. The New European Driving Cycle (NEDC) is adopted to measure emissions for all new internal combustion engines in the European Union, and it is performed on cold vehicle, starting at a temperature of 22°C ± 2°C. Consequently, the cold-start efficiency of internal combustion engine is becoming of predominant interest. Since at cold start the lubricant oil viscosity is higher than at the target operating temperature, the consequently higher energy losses due to increased frictions can substantially affect the emission cycle results in terms of fuel consumption and CO2 emissions. A suitable thermal management system, such as an exhaust-to-oil heat exchanger, could help to raise the oil temperature more quickly.
Technical Paper

Analysis of the Effects of Injection Pressure Variation in Gasoline Partially Premixed Combustion

2021-04-06
2021-01-0517
Compression-ignited engines are still considered the most efficient and reliable technology for automotive applications. However, current and future emission regulations, which severely limit the production of NOx, particulate matter and CO2, hinder the use of diesel-like fuels. As a matter of fact, the spontaneous ignition of directly-injected Diesel leads to a combustion process that is heterogeneous by nature, therefore characterized by the simultaneous production of particulate matter and NOx. In this scenario, several innovative combustion techniques have been investigated over the past years, the goal being to benefit from the high thermal efficiency of compression-ignited engines, which results primarily from high Compression Ratio and lean and unthrottled operation, while simultaneously mitigating the amount of pollutant emissions.
Journal Article

Combustion Indexes for Innovative Combustion Control

2017-09-04
2017-24-0079
The continuous development of modern Internal Combustion Engine (ICE) management systems is mainly aimed at combustion control improvement. Nowadays, performing an efficient combustion control is crucial for drivability improvement, efficiency increase and pollutant emissions reduction. These aspects are even more crucial when innovative combustions (such as LTC or RCCI) are performed, due to the high instability and the high sensitivity with respect to the injection parameters that are associated to this kind of combustion. Aging of all the components involved in the mixture preparation and combustion processes is another aspect particularly challenging, since not all the calibrations developed in the setup phase of a combustion control system may still be valid during engine life.
Technical Paper

Common Rail Multi-Jet Diesel Engine Combustion Model Development for Control Purposes

2007-04-16
2007-01-0383
Multi-jet injection strategies open significant opportunities for the combustion management of the modern diesel engine. Splitting up the injection process into 5 steps facilitates the proper design of the combustion phase in order to obtain the desired torque level, whilst attempting a reduction in emissions, particularly in terms of NOx. Complex 3-D models are needed in the design stage, where components such as the injector or combustion chamber shape have to be determined. Alternatively, zero-dimensional approaches are more useful when fast interpretation of experimental data is needed and an optimization of the combustion process should be obtained based on actual data. For example, zero-dimensional models allow a quick choice of optimum control settings for each engine operating condition, avoiding the need to test all the possible combinations of engine control parameters.
Technical Paper

Conceptual Design and Analytic Assessment of 48V Electric Hybrid Powertrain Architectures for Passenger Cars

2019-04-02
2019-01-0353
To meet the requirements in relation to pollutants, CO2-emissions, performances, comfort and costs for 2025 timeframe, many technology options for the powertrain, that plays a key role in the vehicle, are possible. Beside the central aspect of reducing standard cycle consumption levels and emissions, consumer demands are also growing with respect to comfort and functionality. In addition, there is also the challenge of finding cost efficient ways of integrating technologies into a broad range of vehicles with different levels of hybridization. High degrees of electrification simultaneously provide opportunities to reduce the technology content of the internal combustion engines (ICE), resulting in a cost balancing compromise between combustion engine and hybrid technology. The design and optimization of powertrain topologies, functionalities, and components require a complex development process.
Technical Paper

Development and Software in the Loop Validation of a Model-based Water Injection Combustion Controller for a GDI TC Engine

2019-04-02
2019-01-1174
Turbocharged (TC) engines work at high Indicated Mean Effective Pressure (IMEP), resulting in high in-cylinder pressures and temperatures, improving thermal efficiency, but at the same time increasing the possibility of abnormal combustion events like knock and pre-ignition. To mitigate knocking conditions, engine control systems typically apply spark retard and/or mixture enrichment, which decrease indicated work and increase specific fuel consumption. Many recent studies have advocated Water Injection (WI) as an approach to replace or supplement existing knock mitigation techniques. Water reduces temperatures in the end gas zone due to its high latent heat of vaporization. Furthermore, water vapor acts as diluent in the combustion process. In this paper, the development of a novel closed-loop, model-based WI controller is discussed and critically analyzed.
Technical Paper

Development and Validation of a Methodology for Real-Time Evaluation of Cylinder by Cylinder Torque Production Non-Uniformities

2011-09-11
2011-24-0145
Modern internal combustion engine control systems require on-board evaluation of a large number of quantities, in order to perform an efficient combustion control. The importance of optimal combustion control is mainly related to the requests for pollutant emissions reduction, but it is also crucial for noise, vibrations and harshness reduction. Engine system aging can cause significant differences between each cylinder combustion process and, consequently, an increase in vibrations and pollutant emissions. Another aspect worth mentioning is that newly developed low temperature combustion strategies (such as HCCI combustion) deliver the advantage of low engine-out NOx emissions, however, they show a high cylinder-to-cylinder variation. For these reasons, non uniformity in torque produced by the cylinders in an internal combustion engine is a very important parameter to be evaluated on board.
Technical Paper

Development and Validation of a Virtual Sensor for Estimating the Maximum in-Cylinder Pressure of SI and GCI Engines

2021-09-05
2021-24-0026
This work focuses on the development and validation of a data-driven model capable of predicting the maximum in-cylinder pressure during the operation of an internal combustion engine, with the least possible computational effort. The model is based on two parameters, one that represents engine load and another one the combustion phase. Experimental data from four different gasoline engines, two turbocharged Gasoline Direct Injection Spark Ignition, a Naturally Aspirated SI and a Gasoline Compression Ignition engine, was used to calibrate and validate the model. Some of these engines were equipped with technologies such as Low-Pressure Exhaust Gas Recirculation and Water Injection or a compression ignition type of combustion in the case of the GCI engine. A vast amount of engine points were explored in order to cover as much as possible of the operating range when considering automotive applications and thus confirming the broad validity of the model.
Technical Paper

Development of a Novel Approach for Non-Intrusive Closed-Loop Heat Release Estimation in Diesel Engines

2013-04-08
2013-01-0314
Over the past years, policies affecting pollutant emissions control for Diesel engines have become more and more restrictive. In order to meet such requirements, innovative combustion control methods have currently become a key factor. Several studies demonstrate that the desired pollutant emission reduction can be achieved through a closed-loop combustion control based on in-cylinder pressure processing. Nevertheless, despite the fact that cylinder pressure sensors for on-board application have been recently developed, large scale deployment of such systems is currently hindered by unsatisfactory long term reliability and high costs. Whereas both the accuracy and the reliability of pressure measurement could be improved in future years, pressure sensors would still be a considerable part of the cost of the entire engine management system.
Technical Paper

Development of an Urea Supply System for the SCR Catalyst

2013-01-09
2013-26-0047
The increase in the fuel price and more stringent regulations on greenhouse gases (CO2) make the engine compression ignition technology even more attractive in the context of internal combustion engines. This is because the modern turbocharged direct injection engines, with the common rail fuel system, are characterized by high combustion efficiency and power density, that make them particularly suitable both for applications on and off road. On the other hand, the compression ignition engines are subject to a heavy technological developments to meet the more stringent regulations on emissions of exhaust pollutants, especially PM and NOx. The adopted technologies have two main approaches, on the combustion and on the exhaust gas aftertreatment. The measures applied for combustion can reduce emissions, but with the risk of penalizing the other engine performances, such as noise, power output and fuel consumption.
Technical Paper

Diesel Engine Acoustic Emission Analysis for Combustion Control

2012-04-16
2012-01-1338
Future regulations on pollutant emissions will impose a drastic cut on Diesel engines out-emissions. For this reason, the development of closed-loop combustion control algorithms has become a key factor in modern Diesel engine management systems. Diesel engines out-emissions can be reduced through a highly premixed combustion portion in low and medium load operating conditions. Since low-temperature premixed combustions are very sensitive to in-cylinder thermal conditions, the first aspect to be considered in newly developed Diesel engine control strategies is the control of the center of combustion. In order to achieve the target center of combustion, conventional combustion control algorithms correct the measured value varying main injection timing. A further reduction in engine-out emissions can be obtained applying an appropriate injection strategy.
Technical Paper

Electric Low Pressure Fuel Pump Control for Fuel Saving

2013-04-08
2013-01-0339
The trend of CO2 emission limits and the fuel saving due to the oil price increase are important drivers for engines development. The involved technologies have the aim to improve the global engine efficiency, improving combustion and minimizing energy losses. The engine auxiliary devices electrification (i.e. cooling pump or lubricating pump) is a way to reduce not useful energy consumption, because it becomes possible to control them depending on engine operating point. This kind of management can be applied to the electric low pressure fuel pump. Usually the fuel delivery is performed at the maximum flow rate and a pressure regulator discharges the exceeding fuel amount inside the rail (i.e. gasoline engine) or upstream of the high pressure pump (i.e. common rail diesel engine). At part load, especially in diesel application, the electric fuel pump flow is higher than needed for engine power generation.
Technical Paper

Engine Acoustic Emission Used as a Control Input: Applications to Diesel Engines

2016-04-05
2016-01-0613
The need for strategies that allow managing combustion in an adaptive way has recently widely increased. Especially Diesel engines aimed for clean combustion require a precise control of the combustion outputs. Acoustic emission of internal combustion engines contains a lot of information related to engine behavior and working conditions. Mechanical noise and combustion noise are usually the main contributions to the noise produced by an engine. Combustion noise in particular can be used as an indicator of the combustion that is taking place inside the combustion chamber and therefore as a reference for the control strategy. This work discusses the correlations existing between in cylinder combustion and the acoustic emission radiated by the engine and presents a possible approach to use this signal in the engine management system for control purposes.
Technical Paper

Estimation of the Engine Thermal State by in-Cylinder Pressure Measurement in Automotive Diesel Engines

2015-04-14
2015-01-1623
International regulations continuously restrict the standards for the exhaust emissions from automotive engines. In order to comply with these requirements, innovative control and diagnosis systems are needed. In this scenario the application of methodologies based on the in-cylinder pressure measurement finds widespread applications. Indeed, almost all engine thermodynamic variables useful for either control or diagnosis can be derived from the in-cylinder pressure. Apart for improving the control accuracy, the availability of the in-cylinder pressure signal might also allow reducing the number of existing sensors on-board, thus lowering the equipment costs and the engine wiring complexity. The paper focuses on the detection of the engine thermal state, which is fundamental to achieve suitable control of engine combustion and after-treatment devices.
Technical Paper

Experimental Investigation on the Effects of Cooled Low Pressure EGR and Water Injection on Combustion of a Turbocharged GDI Engine

2020-09-27
2020-24-0003
This work focuses on the effects of cooled Low Pressure EGR and Water Injection observed by conducting experimental tests consisting mainly of Spark Advance sweeps at different cooled LP-EGR and WI rates. The implications on combustion and main engine performance indexes are then analysed and modelled with a control-oriented approach, showing that combustion duration and phase and exhaust gas temperature are the main affected parameters. Results show that cooled LP-EGR and WI have similar effects, being the associated combustion speed decrease the main cause of exhaust gas temperature reduction. Experimental data is used to identify control-oriented polynomial models able to capture the effects of LP-EGR and WI on both these aspects. The limitations of LP-EGR are also explored, identifying maximum compressor volumetric flow and combustion stability as the main ones.
Technical Paper

Experimental Validation of a Model-Based Water Injection Combustion Control System for On-Board Application

2019-09-09
2019-24-0015
Water Injection (WI) has become a key technology for increasing combustion efficiency in modern GDI turbocharged engines. In fact, the addition of water mitigates significantly the occurrence of knock, reduces exhaust gas temperatures, and opens the possibility to reach optimum heat release phasing even at high load. This work presents the latest development of a model-based WI controller, and its experimental validation on a GDI TC engine. The controller is based on a novel approach that involves an analytic combustion model to define the spark advance (SA) required to reach a combustion phase target, considering injected water mass effects. The calibration and experimental validation of the proposed controller is shown in detail in the paper.
Technical Paper

Fuel Economy Optimization of Euro 6 Compliant Light Commercial Vehicles Equipped with SCR

2014-04-01
2014-01-1356
The Selective Catalytic Reduction (SCR) system, installed on the exhaust line, is currently widely used on Diesel heavy-duty trucks and it is considered a promising technique for Euro 6 compliancy for light and medium duty trucks and bigger passenger cars. Moreover, new more stringent emission regulations and homologation cycles are being proposed for Euro 6c stage and they are scheduled to be applied by the end of 2017. In this context, the interest for SCR technology and its application on light-duty trucks is growing, with a special focus on its potential benefit in term of fuel consumption reduction, thanks to combustion optimization. Nevertheless, the need to warm up the exhaust gas line, to meet the required NOx conversion efficiency, remains an issue for such kind of applications.
X