Refine Your Search

Topic

Search Results

Journal Article

An Enhanced Σ-Y Spray Atomization Model Accounting for Diffusion due to Drift-Flux Velocities

2020-04-14
2020-01-0832
Spray modeling techniques have evolved from the classic DDM (Discrete Drops Method) approach, where the continuous liquid jet is discretized into “drops” or “parcels” till advanced spray models often based on Eulerian approaches. The former technique, although computationally efficient, is essentially inadequate in highly dense jets, as in the near nozzle region of compression ignition engines, while the latter could lead to extreme levels of computational effort when resolved interface capturing methods, such as VoF (Volume of Fluids) and LS (Level-Set) types, are used. However, in a typical engineering calculation, the mesh resolution is considerably coarser than in these high fidelity computations. If one presumes that these interfacial details are far smaller than the mesh size, smoothing features over at least one cell ultimately results in a diffuse-interface treatment in a Eulerian framework.
Technical Paper

Analysis of RF Corona Ignition in Lean Operating Conditions Using an Optical Access Engine

2017-03-28
2017-01-0673
Radio Frequency Corona ignition systems represent an interesting solution among innovative ignition strategies for their ability to stabilize the combustion and to extend the engine operating range. The corona discharge, generated by a strong electric field at a frequency of about 1 MHz, produces the ignition of the air-fuel mixture in multiple spots, characterized by a large volume when compared to a conventional spark, increasing the early flame growth speed. The transient plasma generated by the discharge, by means of thermal, kinetic and transport effects, allows a robust initialization of the combustion even in critical conditions, such as using diluted or lean mixtures. In this work the effects of Corona ignition have been analyzed on a single cylinder optical engine fueled with gasoline, comparing the results with those of a traditional single spark ignition.
Technical Paper

Application of a Fully Flexible Electro-Hydraulic Camless System to a Research SI Engine

2009-09-13
2009-24-0076
This paper presents the further development of an electro-hydraulic camless valve actuation system for internal combustion engines. The system (Hydraulic Valve Control - HVC) is an open loop device for engine valve fully flexible camless actuation. Valve timing and duration are controlled by a pilot stage governed by a solenoid, fast-acting, three-way valve. Valve lift is controlled by varying the oil pressure of the power stage. The system exploits an energy recovery working principle that plays a significant role in reducing the power demand of the whole valve train. In the present paper a new HVC actuator design is presented and its performances in terms of valve lift profile, repeatability and landing are discussed. Experimental data obtained by the application of the HVC system to a motored, single-cylinder research engine have been used to support the numerical evaluation of the potentialities of non-conventional valve actuation in engine part-load operation.
Technical Paper

Combustion Behavior of an RF Corona Ignition System with Different Control Strategies

2018-04-03
2018-01-1132
It has been proved that Radio Frequency Corona, among other innovative ignition systems, is able to stabilize combustion and to extend the engine operating range in lean conditions, with respect to conventional spark igniters. This paper reports on a sensitivity analysis on the combustion behavior for different values of Corona electric control parameters (supply voltage and discharge duration). Combustion analysis has been carried out on a single cylinder PFI gasoline-fueled optical engine, by means of both indicating measurements and imaging. A high-speed camera has been used to record the natural luminosity of premixed flames and the obtained images have been synchronized with corresponding indicating acquisition data. Imaging tools allowed to observe and measure the early flame development, providing information which are not obtainable by a pressure-based indicating system.
Technical Paper

Coupled Eulerian Internal Nozzle Flow and Lagrangian Spray Simulations for GDI Systems

2017-03-28
2017-01-0834
An extensive numerical study of two-phase flow inside the nozzle holes and the issuing jets for a multi-hole direct injection gasoline injector is presented. The injector geometry is representative of the Spray G nozzle, an eight-hole counter-bored injector, from the Engine Combustion Network (ECN). Homogeneous Relaxation Model (HRM) coupled with the mixture multiphase approach in the Eulerian framework has been utilized to capture the phase change phenomena inside the nozzle holes. Our previous studies have demonstrated that this approach is capable of capturing the effect of injection transients and thermodynamic conditions in the combustion chamber, by predicting phenomenon such as flash boiling. However, these simulations were expensive, especially if there is significant interest in predicting the spray behavior as well.
Technical Paper

Dependence of Flow Characteristics of a High Performance S.I. Engine Intake System on Test Pressure and Tumble Generation Conditions - Part 1: Experimental Analysis

2004-03-08
2004-01-1530
In this paper an experimental analysis is carried out to evaluate the dependence of the flow characteristics in the intake system of a high performance 4 valve, Spark Ignition Internal Combustion Engine, on the experimental conditions at the steady flow test bench. Experimental tests are performed at different pressure levels on a Ducati Corse racing engine head, to measure the Discharge Coefficient Cd and the Tumble Coefficient NT, expanding the work already presented in a previous work by the same research group: with a new test bench, the maximum test pressure level is increased up to 24 kPa, while differently-shaped tumble adaptors are used to evaluate Nt. The study is aimed at determining the influence of the test pressure on Cd and NT measurements, and in particular of the tumble adaptor shape.
Technical Paper

Development of a CFD Solver for Primary Diesel Jet Atomization in FOAM-Extend

2019-09-09
2019-24-0128
Ongoing development of a CFD framework for the simulation of primary atomization of a high pressure diesel jet is presented in this work. The numerical model is based on a second order accurate, polyhedral Finite Volume (FV) method implemented in foam-extend-4.1, a community driven fork of the OpenFOAM software. A geometric Volume-of-Fluid (VOF) method isoAdvector is used for interface advection, while the Ghost Fluid Method (GFM) is used to handle the discontinuity of the pressure and the pressure gradient at the interface between the two phases: n-dodecane and air in the combustion chamber. In order to obtain highly resolved interface while minimizing computational time, an Adaptive Grid Refinement (AGR) strategy for arbitrary polyhedral cells is employed in order to refine the parts of the grid near the interface. Dynamic Load Balancing (DLB) is used in order to preserve parallel efficiency during AGR.
Technical Paper

Development of an Electro-Hydraulic Camless VVA System

2007-09-16
2007-24-0088
Among variable valve actuation systems, fully flexible systems such as camless devices are the most attractive valvetrains for near-future engines. This paper presents a research activity about an electro-hydraulic camless system for internal combustion engines. The Hydraulic Valve Control (HVC) system uses hydraulic forces to open the valve while a mechanical spring is used for the closure. The system is fed by an hydraulic pump and two pressure regulators which provide two different pressure levels: a high pressure level (approximately 100 bar) for the pilot stage and a low adjustable pressure level (from 20 to 90 bar) for the actuator power stage. The valve opening duration is controlled by varying the timing of the opening signal of the pilot stage; the valve lift is adjusted varying the oil pressure of the power stage. From a general point of view, the HVC system is an open loop device for engine valve actuation.
Technical Paper

Development of an Urea Supply System for the SCR Catalyst

2013-01-09
2013-26-0047
The increase in the fuel price and more stringent regulations on greenhouse gases (CO2) make the engine compression ignition technology even more attractive in the context of internal combustion engines. This is because the modern turbocharged direct injection engines, with the common rail fuel system, are characterized by high combustion efficiency and power density, that make them particularly suitable both for applications on and off road. On the other hand, the compression ignition engines are subject to a heavy technological developments to meet the more stringent regulations on emissions of exhaust pollutants, especially PM and NOx. The adopted technologies have two main approaches, on the combustion and on the exhaust gas aftertreatment. The measures applied for combustion can reduce emissions, but with the risk of penalizing the other engine performances, such as noise, power output and fuel consumption.
Technical Paper

Engine Efficiency Measurements Using a 100 kHz Radio Frequency Corona Igniter

2023-08-28
2023-24-0041
Conventional spark-ignition engines are currently incapable of meeting rising customer performance demands while complying with even stringent pollutant-emissions regulations. As a result, innovative ignition systems are being developed to accomplish these targets. Radio-Frequency corona igniters stand out for their ability to accelerate early flame growth speed by exploiting the combined action of kinetic, thermal and transport effects. Furthermore, a volumetric discharge enables the promotion of combustion over a wide area, as opposed to the local ignition of traditional spark. The present work wants to evaluate the advantages of a Streamer-type Radio Frequency corona discharge at about 100 kHz with respect to those of traditional spark igniter.
Technical Paper

Evaluation of Diesel Spray Momentum Flux in Transient Flow Conditions

2010-10-25
2010-01-2244
In the present paper, a detailed numerical and experimental analysis of a spray momentum flux measurement device capability is presented. Particular attention is devoted to transient, engine-like injection events in terms of spray momentum flux measurement. The measurement of spray momentum flux in steady flow conditions, coupled with knowledge of the injection rate, is steadily used to estimate the flow mean velocity at the nozzle exit and the extent of flow cavitation inside the nozzle in terms of a velocity reduction coefficient and a flow section reduction coefficient. In the present study, the problem of analyzing spray evolution in short injection events by means of jet momentum flux measurement was approached. The present research was based on CFD-3D analysis of the spray-target interaction in a momentum measurement device.
Technical Paper

Experimental Investigation of a Port Fuel Injected Spark Ignition Engine Fuelled with Variable Mixtures of Hydrogen and Methane

2013-04-08
2013-01-0226
The paper describes an experimental research which addressed the study of a 4-cylinder, spark-ignited, port-fuel-injected, production engine modified for hydrogen-methane blend fueling. The original engine was a 2.8-liter, naturally aspirated, methane-fuelled engine. The engine modifications included two fuel injectors per port and ECU replacement for controlling lean burn combustion and enabling real-time variation of the fuel blend, based on an alpha-N mapping approach. Since hydrogen infrastructures are an issue and its production costs are still today very high, pure hydrogen usage is not a viable solution for near future vehicles. In view of this, in the present paper, the maximum volumetric concentration of hydrogen in methane has been set to 35% (which on a mass basis corresponds to 6.3%). The variability of the fuel mixture has been achieved by installing two separate fuel lines connected to two fuel rails: a total of 8 injectors are installed.
Journal Article

Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D

2018-04-03
2018-01-0277
In order to improve understanding of the primary atomization process for diesel-like sprays, a collaborative experimental and computational study was focused on the near-nozzle spray structure for the Engine Combustion Network (ECN) Spray D single-hole injector. These results were presented at the 5th Workshop of the ECN in Detroit, Michigan. Application of x-ray diagnostics to the Spray D standard cold condition enabled quantification of distributions of mass, phase interfacial area, and droplet size in the near-nozzle region from 0.1 to 14 mm from the nozzle exit. Using these data, several modeling frameworks, from Lagrangian-Eulerian to Eulerian-Eulerian and from Reynolds-Averaged Navier-Stokes (RANS) to Direct Numerical Simulation (DNS), were assessed in their ability to capture and explain experimentally observed spray details. Due to its computational efficiency, the Lagrangian-Eulerian approach was able to provide spray predictions across a broad range of conditions.
Technical Paper

Experimental and Numerical Investigation of the Flow Field Effect on Arc Stretching for a J-type Spark Plug

2021-09-05
2021-24-0020
Nowadays internal combustion engines can operate under lean combustion conditions to maximize efficiency, as long as combustion stability is guaranteed. The robustness of combustion initiation is one of the main issues of actual spark-ignition engines, especially at high level of excess-air or dilution. The enhancement of the in-cylinder global motion and local turbulence is an effective way to increase the flame velocity. During the ignition process, the excessive charge motion can hinder the spark discharge and eventually cause a misfire. In this perspective, the interaction between the igniter and the flow field is a fundamental aspect which still needs to be explored in more detail to understand how the combustion originates and develops. In this work, a combined experimental and numerical study is carried out to investigate the flow field around the spark gap, and its effect on the spark discharge evolution.
Technical Paper

Experimental and Numerical Investigations of the Early Flame Development Produced by a Corona Igniter

2019-10-07
2019-24-0231
In order to reduce engine emissions and fuel consumption, extensive research efforts are being devoted to develop innovative ignition devices, able to extend the stable engine operating range towards increasing lean conditions. Among these, radio frequency corona ignition systems, which produce a strong electric field at a frequency of about 1 MHz, can create discharges characterized by simultaneous thermal and kinetic effects. These devices can considerably increase the early flame growth speed, initiating the combustion process in a wide region, as opposed to the local ignition generated by traditional sparks. To explore the corona ignition behavior, experimental campaigns were carried out to investigate different operating conditions, in a constant volume calorimeter designed to measure the deposited thermal energy. The present work compares the combustion development generated by a traditional spark and the corona igniter through computational fluid dynamics simulations.
Technical Paper

Flow Characterization of a High Performance S.I. Engine Intake System - Part 1: Experimental Analysis

2003-03-03
2003-01-0623
In this work an experimental analysis is performed to evaluate the influence of different flow bench test conditions and system configurations on the flow characteristics in the intake system of a high performance 4-valve, SI Internal Combustion Engine: valve lift, test pressure drop, throttle valve aperture, throttle valve opening direction in respect to the intake system layout (i.e. clockwise/counterclockwise), presence of the tumble adaptor. To this aim, experimental tests are performed on a Ducati Corse racing engine cylinder head, by measuring the discharge coefficient and the tumble coefficient. The several experimental data obtained by combining the different operational and geometrical parameters are analysed and discussed.
Technical Paper

Fluid Dynamic 1D Modeling for the Design Optimization of Reed Valve Devices in Secondary Air Injection Applications

2005-09-11
2005-24-080
Modeling and studies on reed valve devices are topics often dealt with when designing internal combustion engine intake and exhaust systems. This paper describes an activity about the modeling and the optimization potentiality of an engine equipped with a secondary air injection system by means of a reed valve device. The first step of the work dealt with the development and tuning of a non-linear Finite Element model of reed valve and with the integration of this model into a one-dimensional fluid-dynamics simulation code. In particular during this phase the potentialities of the method were tested by implementing the FE model both in a 1D University code and in a 1D commercial code (by means of a provided interface for User Defined Elements). In the second step of the work the simulation results were analyzed for different engine operating points.
Technical Paper

Heavy-Duty Compression-Ignition Engines Retrofitted to Spark-Ignition Operation Fueled with Natural Gas

2019-09-09
2019-24-0030
Natural gas is a promising alternative gaseous fuel due to its availability, economic, and environmental benefits. A solution to increase its use in the heavy-duty transportation sector is to convert existing heavy-duty compression ignition engines to spark-ignition operation by replacing the fuel injector with a spark plug and injecting the natural gas inside the intake manifold. The use of numerical simulations to design and optimize the natural gas combustion in such retrofitted engines can benefit both engine efficiency and emission. However, experimental data of natural gas combustion inside a bowl-in-piston chamber is limited. Consequently, the goal of this study was to provide high-quality experimental data from such a converted engine fueled with methane and operated at steady-state conditions, exploring variations in spark timing, engine speed and equivalence ratio.
Technical Paper

Investigations on Hydrogen Injections Using a Real-Fluid Approach

2023-04-11
2023-01-0312
Computational fluid dynamics is used with the aim to gain further insights of the hydrogen injection process in internal combustion engines. To this end, three-dimensional RANS simulations of hydrogen under-expanded jets under a variety of injection pressures and temperatures and chamber backpressure are performed. A numerical framework that accounts for real-fluid effects is used which includes accurate non-linear mixing rules for thermodynamic and transport properties with multiple species. Jet formation process, transition to turbulent regime, and mixing process are investigated which are key aspects for the design of efficient injection and combustion. Different simulations are discussed to investigate the structures in the near field, such as Mach disk, barrel, and reflected shocks. It is found that for direct injection applications, especially in high back-pressure cases, accounting for real fluid behavior of hydrogen-air mixtures is important for accurate predictions.
Technical Paper

Large Eddy Simulation of Ignition and Combustion Stability in a Lean SI Optical Access Engine

2019-09-09
2019-24-0087
Large-Eddy simulations (LES) are becoming an engineering tool for studying internal combustion engines (ICE) thanks to their ability to capture cycle-to-cycle variability (CCV) resolving most of the turbulent flow structures. ICEs can operate under lean combustion conditions to maximize efficiency. However, instabilities associated with lean combustion may cause problems, such as excessive levels of CCV or even misfires. In this context, the energy released by the spark during the ignition and its interaction with the flow field are fundamental parameters that affect ignition stability and how combustion takes place and develops. The aim of this paper is the characterization of the combustion stability in a SI optical access engine, by means of multicycle LES simulations, using CONVERGE software. Sub-grid-scale turbulence is modeled with a viscous one-equation model.
X