Refine Your Search

Search Results

Standard

Dynamic Cleat Test with Perpendicular and Inclined Cleats

2013-09-05
HISTORICAL
J2730_201309
This SAE Recommended Practice describes a test method for measuring the forces and moments generated at a high frequency response spindle when a rolling tire impacts a cleat. The cleat is configured either with its crest perpendicular, 90°, to the path of the tire or optionally with its crest inclined at an angle to the path of the tire. The carriage to which the spindle is attached is rigidly constrained in position during each test condition so as to provide a good approximation to fixed loaded radius operation. The method discussed in this document provides impact force and moment time histories essentially free from variations due to tire non-uniformities. The method applies to any size tire so long as the equipment is properly scaled to conduct the measurements for the intended test tire. The data are suitable for use in determining parameters for road load models and for comparative evaluations of the measured properties in research and development.
Standard

Dynamic Cleat Test with Perpendicular and Inclined Cleats

2006-08-23
HISTORICAL
J2730_200608
This SAE Recommended Practice describes a test method for measuring the forces and moments generated at a high frequency response spindle when a rolling tire impacts a cleat. The cleat is configured either with its crest perpendicular, 90°, to the path of the tire or optionally with its crest inclined at an angle to the path of the tire. The carriage to which the spindle is attached is rigidly constrained in position during each test condition so as to provide a good approximation to fixed loaded radius operation. The method discussed in this document provides impact force and moment time histories essentially free from variations due to tire non-uniformities. The method applies to any size tire so long as the equipment is properly scaled to conduct the measurements for the intended test tire. The data are suitable for use in determining parameters for road load models and for comparative evaluations of the measured properties in research and development.
Standard

Dynamic Cleat Test with Perpendicular and Inclined Cleats

2021-01-13
CURRENT
J2730_202101
This SAE Recommended Practice describes a test method for measuring the forces and moments generated at a high frequency response spindle when a rolling tire impacts a cleat. The cleat is configured either with its crest perpendicular, 90 degrees, to the path of the tire or optionally with its crest inclined at an angle to the path of the tire. The carriage to which the spindle is attached is rigidly constrained in position during each test condition to provide a good approximation to fixed loaded radius operation. The method discussed in this document provides impact force and moment time histories essentially free from variations due to tire non-uniformities. The method applies to any size tire so long as the equipment is properly scaled to conduct the measurements for the intended test tire. The data are suitable for use in determining parameters for road load models and for comparative evaluations of the measured properties in research and development.
Standard

Low Speed Enveloping Test with Perpendicular and Inclined Cleats

2006-11-06
HISTORICAL
J2731_200611
This SAE Recommended Practice describes a test method for measuring the forces and moments generated at a spindle when a tire rolls over a rectangular obstacle, cleat, at very low speed. The cleat used in a particular test condition is configured with its crest either perpendicular, 90°, to the path of the tire or optionally with its crest inclined at an angle to the path of the tire. The carriage to which the spindle is attached is rigidly constrained in position during each test condition so as to provide a good approximation to fixed loaded radius operation. The method discussed in this document provides cleat envelopment force and moment and tire angular position histories as functions of distance traveled. These histories are essentially free from variations due to tire non-uniformities. The method applies to any size tire so long as the equipment is properly scaled to conduct the measurements for the intended test tire.
Standard

Low Speed Enveloping Test with Perpendicular and Inclined Cleats

2012-05-23
HISTORICAL
J2731_201205
This SAE Recommended Practice describes a test method for measuring the forces and moments generated at a spindle when a tire rolls over a rectangular obstacle, cleat, at very low speed. The cleat used in a particular test condition is configured with its crest either perpendicular, 90°, to the path of the tire or optionally with its crest inclined at an angle to the path of the tire. The carriage to which the spindle is attached is rigidly constrained in position during each test condition so as to provide a good approximation to fixed loaded radius operation. The method discussed in this document provides cleat envelopment force and moment and tire angular position histories as functions of distance traveled. These histories are essentially free from variations due to tire non-uniformities. The method applies to any size tire so long as the equipment is properly scaled to conduct the measurements for the intended test tire.
Standard

Low Speed Enveloping Test with Perpendicular and Inclined Cleats

2018-05-16
HISTORICAL
J2731_201805
This SAE Recommended Practice describes a test method for measuring the forces and moments generated at a spindle when a tire rolls over a rectangular obstacle, cleat, at very low speed. The cleat used in a particular test condition is configured with its crest either perpendicular, 90 degrees, to the path of the tire or optionally with its crest inclined at an angle to the path of the tire. The carriage to which the spindle is attached is rigidly constrained in position during each test condition so as to provide a good approximation to fixed loaded radius operation. The method discussed in this document provides cleat envelopment force and moment and tire angular position histories as functions of distance traveled. These histories are essentially free from variations due to tire non-uniformities. The method applies to any size tire so long as the equipment is properly scaled to conduct the measurements for the intended test tire.
Standard

Low Speed Enveloping Test with Perpendicular and Inclined Cleats

2018-11-20
CURRENT
J2731_201811
This SAE Recommended Practice describes a test method for measuring the forces and moments generated at a spindle when a tire rolls over a rectangular obstacle, cleat, at very low speed. The cleat used in a particular test condition is configured with its crest either perpendicular, 90 degrees, to the path of the tire or optionally with its crest inclined at an angle to the path of the tire. The carriage to which the spindle is attached is rigidly constrained in position during each test condition so as to provide a good approximation to fixed loaded radius operation. The method discussed in this document provides cleat envelopment force and moment and tire angular position histories as functions of distance traveled. These histories are essentially free from variations due to tire non-uniformities. The method applies to any size tire so long as the equipment is properly scaled to conduct the measurements for the intended test tire.
Standard

MEASUREMENT OF VEHICLE AND SUSPENSION PARAMETERS FOR DIRECTIONAL CONTROL STUDIES—RATIONALE

1994-05-10
HISTORICAL
J1574/2_199405
This SAE Information Report presents the background and rationale for SAE J1574-1. The motor vehicle industry is working toward a more complete understanding of the factors affecting the motions of vehicles on the roadway, by using a variety of techniques that predict responses to road and operator inputs. The capability to predict responses is desirable so that vehicles can be designed for optimum safety and utility. In addition to the force and moment properties of the pneumatic tires, a number of vehicle and suspension parameters affect the response of the vehicle; these include weight, center-of-gravity location, moments of inertia, suspension ride and roll rates, suspension kinematic and compliance properties, and shock absorber characteristics. These parameters must be quantified in order to predict vehicle responses. Measurement of most of these parameters will be limited to determining their values in the linear range for use in directional control simulations.
Standard

Measurement of Vehicle and Suspension Parameters for Directional Control Studies

2005-05-09
HISTORICAL
J1574/1_200505
The parameters measured according to this SAE Recommended Practice will generally be used in simulating directional control performance in the linear range. (The “linear range” is the steady-state lateral acceleration below which steering wheel angle can generally be considered to be linearly related to lateral acceleration.) But they may be used for certain other simulations (such as primary ride motions), vehicle and suspension characterization and comparison, suspension development and optimization, and processing of road test data. This document is intended to apply to passenger cars, light trucks, and on-highway recreational and commercial vehicles, both non-articulated and articulated. Measurement techniques are intended to apply to these vehicles, with alterations primarily in the scale of facilities required.
Standard

Measurement of Vehicle and Suspension Parameters for Directional Control Studies

2000-03-08
HISTORICAL
J1574/1_200003
The parameters measured according to this SAE Recommended Practice will generally be used in simulating directional control performance in the linear range. (The “linear range” is the steady-state lateral acceleration below which steering wheel angle can generally be considered to be linearly related to lateral acceleration.) But they may be used for certain other simulations (such as primary ride motions), vehicle and suspension characterization and comparison, suspension development and optimization, and processing of road test data. This document is intended to apply to passenger cars, light trucks, and on-highway recreational and commercial vehicles, both non-articulated and articulated. Measurement techniques are intended to apply to these vehicles, with alterations primarily in the scale of facilities required.
Standard

Measurement of Vehicle and Suspension Parameters for Directional Control Studies—Rationale

2000-03-08
HISTORICAL
J1574/2_200003
This SAE Information Report presents the background and rationale for SAE J1574-1. The motor vehicle industry is working toward a more complete understanding of the factors affecting the motions of vehicles on the roadway, by using a variety of techniques that predict responses to road and operator inputs. The capability to predict responses is desirable so that vehicles can be designed for optimum safety and utility. In addition to the force and moment properties of the pneumatic tires, a number of vehicle and suspension parameters affect the response of the vehicle; these include weight, center-of-gravity location, moments of inertia, suspension ride and roll rates, suspension kinematic and compliance properties, and shock absorber characteristics. These parameters must be quantified in order to predict vehicle responses. Measurement of most of these parameters will be limited to determining their values in the linear range for use in directional control simulations.
Standard

Measurement of Vehicle and Suspension Parameters for Directional Control Studies—Rationale

2005-05-09
HISTORICAL
J1574/2_200505
This SAE Information Report presents the background and rationale for SAE J1574-1. The motor vehicle industry is working toward a more complete understanding of the factors affecting the motions of vehicles on the roadway, by using a variety of techniques that predict responses to road and operator inputs. The capability to predict responses is desirable so that vehicles can be designed for optimum safety and utility. In addition to the force and moment properties of the pneumatic tires, a number of vehicle and suspension parameters affect the response of the vehicle; these include weight, center-of-gravity location, moments of inertia, suspension ride and roll rates, suspension kinematic and compliance properties, and shock absorber characteristics. These parameters must be quantified in order to predict vehicle responses. Measurement of most of these parameters will be limited to determining their values in the linear range for use in directional control simulations.
Standard

Modal Testing and Identification of Lower Order Tire Natural Frequencies of Radial Tires

2005-10-12
HISTORICAL
J2710_200510
This SAE Recommended Practice describes test methods for measuring and identifying the natural frequencies for the lower order modes of an inflated radial tire with a fixed spindle while expending modest effort and employing a minimum of test equipment. The methods apply to any size of radial tire so long as the test equipment is properly scaled to conduct the measurements for the intended test tire. Two types of boundary conditions are considered for the tire: unloaded and loaded against a flat surface. The test involves the performance and measurement of an input vibratory force (excitation) to the tire and the corresponding vibratory output (response). The data are suitable for use in determining parameters for road load models and for comparative evaluations of the measured properties in research and development.
Standard

Subjective Rating Scale for Vehicle Handling

2007-04-20
HISTORICAL
J1441_200704
This SAE Recommended Practice establishes a rating scale for subjective evaluation of vehicle handling. The scale is applicable for the evaluation of specific vehicle handling properties in specific maneuvers on the proving grounds and highways. The validity of the evaluation is restricted to the individual handling disciplines defined by these maneuvers and to the particular combination of conditions of the vehicle (e.g., equipment, degree of maintenance) and of the environment (e.g., road, weather). This document is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Standard

Test for Tire Quasi-Static Longitudinal Force versus Longitudinal Displacement and Quasi-Static Lateral Force versus Lateral Force

2018-11-20
CURRENT
J2718_201811
This SAE Recommended Practice describes application of two closely related test procedures, which together determine the linear range longitudinal and lateral stiffnesses of a statically loaded non-rotating tire. The procedures apply to any tire so long as the equipment is properly sized to correctly conduct the measurements for the intended test tire. The data are suitable for use in determining parameters for road load models and for comparative evaluations of the measured properties in research and development. NOTE: Herein, road load models are models for predicting forces applied to the vehicle spindles during operation over irregular pavements. Within the context of this document, forces applied to the pavement are not considered.
Standard

Test for Tire Quasi-Static Longitudinal Force versus Longitudinal Displacement and Quasi-Static Lateral Force versus Lateral Force

2017-09-05
HISTORICAL
J2718_201709
This SAE Recommended Practice describes application of two closely related test procedures, which together determine the linear range longitudinal and lateral stiffnesses of a statically loaded non-rotating tire. The procedures apply to any tire so long as the equipment is properly sized to correctly conduct the measurements for the intended test tire. The data are suitable for use in determining parameters for road load models and for comparative evaluations of the measured properties in research and development. NOTE: Herein, road load models are models for predicting forces applied to the vehicle spindles during operation over irregular pavements. Within the context of this document, forces applied to the pavement are not considered.
Standard

Test for Tire Quasi-Static Longitudinal Force vs. Longitudinal Displacement and Quasi-Static Lateral Force vs. Lateral Displacement

2006-02-22
HISTORICAL
J2718_200602
This SAE Recommended Practice describes application of two closely related test procedures, which together determine the linear range longitudinal and lateral stiffnesses of a statically loaded non-rotating tire. The procedures apply to any tire so long as the equipment is properly sized to correctly conduct the measurements for the intended test tire. The data are suitable for use in determining parameters for road load models and for comparative evaluations of the measured properties in research and development.
Standard

Test for Tire Quasi-Static Longitudinal Force vs. Longitudinal Displacement and Quasi-Static Lateral Force vs. Lateral Displacement

2010-09-07
HISTORICAL
J2718_201009
This SAE Recommended Practice describes application of two closely related test procedures, which together determine the linear range longitudinal and lateral stiffnesses of a statically loaded non-rotating tire. The procedures apply to any tire so long as the equipment is properly sized to correctly conduct the measurements for the intended test tire. The data are suitable for use in determining parameters for road load models and for comparative evaluations of the measured properties in research and development. NOTE: Herein, road load models are models for predicting forces applied to the vehicle spindles during operation over irregular pavements. Within the context of this document, forces applied to the pavement are not considered.
Standard

Tests to Define Tire Size (Geometry), Mass, Inertias

2018-11-20
CURRENT
J2717_201811
This SAE Recommended Practice describes a trio of test methods which determine basic tire size (geometry), mass, and moments of inertia. The methods apply to any tire so long as the equipment is properly scaled to conduct the measurements for the intended test tire. The data are suitable for determining parameters for road load models and for comparative evaluations of the measured properties in research and development. NOTE: Herein, road load models are models for predicting forces applied to the vehicle spindles during operation over irregular surfaces paved or unpaved. Within the context of this Recommended Practice, forces applied to the surface on which the tire is operating are not considered.
Standard

Tests to Define Tire Size (Geometry), Mass, and Inertias

2012-06-21
HISTORICAL
J2717_201206
This SAE Recommended Practice describes a trio of test methods which determine basic tire size (geometry), mass, and moments of inertia. The methods apply to any tire so long as the equipment is properly scaled to conduct the measurements for the intended test tire. The data are suitable for determining parameters for road load models and for comparative evaluations of the measured properties in research and development. NOTE: Herein, road load models are models for predicting forces applied to the vehicle spindles during operation over irregular surfaces paved or unpaved. Within the context of this Recommended Practice, forces applied to the surface on which the tire is operating are not considered.
X