Refine Your Search

Topic

Search Results

Technical Paper

A Methodology for Validating Vehicle Dynamics Simulations

1990-02-01
900128
This paper presents a methodology for validating vehicle stability and control computer simulations. Validation is defined as showing that, within some specified operating range of the vehicle, a simulation's predictions of a vehicle's responses agree with the actual measured vehicle's responses to within some specified level of accuracy. The method uses repeated experimental runs at each test condition to generate sufficient data for statistical analyses. The acquisition and reduction of experimental data, and the processing path for simulation data, are described. The usefulness of time domain validation for steady state and slowly varying transients is discussed. The importance of frequency domain validation for thoroughly validating a simulation is shown. Both qualitative and quantitative methods for the comparison of the simulation predictions with the actual test measurements are developed.
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Technical Paper

A Study of Jackknife Stability of Class VIII Vehicles with Multiple Trailers with ABS Disc/Drum Brakes

2004-03-08
2004-01-1741
This study investigated the jackknife stability of Class VIII double tractor-trailer combination vehicles that had mixed braking configurations between the tractor and trailers and dolly (e.g. ECBS disc brakes on the tractor and pneumatic drum brakes on the trailers and dolly). Brake-in-turn maneuvers were performed with varying vehicle loads and surface conditions. Conditions with ABS ON for the entire vehicle (and select-high control algorithm on the trailers and dolly) found that instabilities (i.e. lane excursions and/or jackknifes) were exhibited under conditions when the surface friction coefficient was 0.3. It was demonstrated that these instabilities could be avoided while utilizing a select-low control algorithm on the trailers and dolly. Simulation results with the ABS OFF for the tractor showed that a tractor equipped with disc brakes had greater jackknife stability.
Technical Paper

A Study of Vehicle Response Asymmetries During Severe Driving Maneuvers

2004-03-08
2004-01-1788
During Phase VI of the National Highway Traffic Safety Administration's (NHTSA) Light Vehicle Rollover Research Program, three of the twenty-six light vehicles tested exhibited significant response asymmetries with respect to left versus right steer maneuvers. This paper investigates possible vehicle asymmetric characteristics and unintended inputs that may cause vehicle asymmetric response. An analysis of the field test data, results from suspension and steering parameter measurements, and a summary of a computer simulation study are also given.
Technical Paper

Adaptation of TruckSim Models to Simulate Experimental Heavy Truck Hard Braking Test Data Under Various Levels of Brake Disablement

2010-10-05
2010-01-1920
This research focuses on the development and performance of analytical models to simulate a tractor-semitrailer in straight-ahead braking. The simulations were modified and tuned to simulate full-treadle braking with all brakes functioning correctly, as well as the behavior of the tractor-semitrailer rig under full braking with selected brakes disabled. The models were constructed in TruckSim and based on a tractor-semitrailer used in dry braking performance testing. The full-scale vehicle braking research was designed to define limits for engineering estimates on stopping distance when Class 8 air-braked vehicles experience partial degradation of the foundation brake system. In the full scale testing, stops were conducted from 30 mph and 60 mph, with the combination loaded to 80,000 lbs (gross combined weight or GCW), half payload, and with the tractor-semitrailer unladen (lightly loaded vehicle weight, or LLVW).
Technical Paper

Advancements in Tire Modeling Through Implementation of Load and Speed Dependent Coefficients

2005-11-01
2005-01-3543
An existing tire model was investigated for additional normal load-dependent characteristics to improve the large truck simulations developed by the National Highway Traffic Safety Administration (NHTSA) for the National Advanced Driving Simulator (NADS). Of the existing tire model coefficients, plysteer, lateral friction decay, aligning torque stiffness and normalized longitudinal stiffness were investigated. The findings of the investigation led to improvements in the tire model. The improved model was then applied to TruckSim to compare with the TruckSim table lookup tire model and test data. Additionally, speed-dependent properties for the NADS tire model were investigated (using data from a light truck tire).
Technical Paper

An Investigation, Via Simulation, of Vehicle Characteristics that Contribute to Steering Maneuver Induced Rollover

1992-02-01
920585
The goal of this research was to find vehicle characteristics which may contribute to steering maneuver induced rollover accidents. This work involved studying vehicle handling dynamics using the Vehicle Dynamics Analysis, Non-Linear (VDANL) computer simulation. The simulation was used to predict vehicle responses while performing 28 different steering induced maneuvers for each of 51 vehicles. Various measures of vehicle response (metrics), such as response times, percent overshoots, etc., were computed for each vehicle from simulation predictions. These vehicle directional response metrics were analyzed in an attempt to identify vehicle characteristics that might be good predictor/explanatory variables for vehicle rollover propensity. The metrics were correlated, using the Statistical Analysis System (SAS) software and logistic regression, with single vehicle accident data from the state of Michigan for the years 1986 through 1988.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
Technical Paper

Consumer Braking Performance Information Initiative

1999-03-01
1999-01-1291
A test procedure that rates brake performance must control variability so that measured differences between vehicles are real. Tests were conducted using standard brake test procedures with three drivers in three cars on wet and dry asphalt with the ABS working and disabled. The differences between vehicles were greater than differences due to ABS condition, surface condition, and drivers. The procedure measured differences between all the vehicles with statistical certainty but used many replications and drivers. If only large differences in performance need to be distinguished, fewer replications and drivers will be needed.
Technical Paper

Derivation and Validation of New Analytical Planar Models for Simulating Multi-Axle Articulated Vehicles

2004-03-08
2004-01-1784
This paper discusses the derivation and validation of planar models of articulated vehicles that were developed to analyze jackknife stability on low-μ surfaces. The equations of motion are rigorously derived using Lagrange's method, then linearized for use in state-space models. The models are verified using TruckSim™, a popular nonlinear solid body vehicle dynamics modeling package. The TruckSim™ models were previously verified using extensive on-vehicle experimental data [1, 2]. A three-axle articulated model is expanded to contain five axles to avoid lumping the parameters for the drive and semitrailer tandems. Compromises inherent in using the linearized models are discussed and evaluated. Finally, a nonlinear tire cornering force model is coupled with the 5-axle model, and its ability to simulate a jackknife event is demonstrated. The model is shown to be valid over a wide range of inputs, up to and including loss of control, on low-and-medium-μ surfaces.
Journal Article

Design Challenges in the Development of a Large Vehicle Inertial Measurement System

2014-04-01
2014-01-0096
The (Vehicle Inertia Parameter Evaluation Rig) VIPER II is a full vehicle mass and inertia parameter measurement machine. The VIPER II expands upon the capabilities of its predecessor and is capable of measuring vehicles with a mass of up to 45,360 kg (100,000 lb), an increase in capacity of 18,100 kg (40,000 lb). The VIPER II also exceeds its predecessor in both the length and width of vehicles it can measure. The VIPER II's maximum vehicle width is 381 cm (150 in) an increase of 76 cm (30 in) and maximum distance from the vehicle CG to the outer most axle is 648 cm (255 in) an additional 152 cm (60 in) The VIPER II is capable of performing measurements including vehicle CG height, pitch, roll, and yaw moments of inertia and the roll/yaw cross product of inertia. While being able to measure both heavier and larger vehicles, the VIPER II is designed to maintain a maximum error of 3% for all inertia measurements and 1% for CG height.
Technical Paper

Development and Implementation of a Path-Following Algorithm for an Autonomous Vehicle

2007-04-16
2007-01-0815
This paper describes the development and implementation of an accurate and repeatable path-following algorithm focused ultimately on vehicle testing. A compact, lightweight, and portable hardware package allows easy installation and negligible impact on the vehicle mass, even for the smallest automobile. Innovative features include the ability to generate a smooth, evenly-spaced path vector regardless the quality of the given path. The algorithm proposed in this work is suitable for testing in a controlled environment. The system was evaluated in simulation and performed well in road tests at low speeds.
Technical Paper

Effects of Loading on Vehicle Handling

1998-02-23
980228
This paper explores the effects of changes in vehicle loading on vehicle inertial properties (center-of-gravity location and moments of inertia values) and handling responses. The motivation for the work is to gain better understanding of the importance vehicle loading has in regard to vehicle safety. A computer simulation is used to predict the understeer changes for three different vehicles under three loading conditions. An extension of this loading study includes the effects of moving occupants, which are modeled for inclusion in the simulation. A two-mass model for occupants/cargo, with lateral translational and rotational degrees of freedom, has been developed and is included in the full vehicle model. Using the simulation, the effects that moving occupants have on vehicle dynamics are studied.
Technical Paper

Empirical Models for Commercial Vehicle Brake Torque from Experimental Data

2003-03-03
2003-01-1325
This paper introduces a new series of empirical mathematical models developed to characterize brake torque generation of pneumatically actuated Class-8 vehicle brakes. The brake torque models, presented as functions of brake chamber pressure and application speed, accurately simulate steer axle, drive axle, and trailer tandem brakes, as well as air disc brakes (ADB). The contemporary data that support this research were collected using an industry standard inertia-type brake dynamometer, routinely used for verification of FMVSS 121 commercial vehicle brake standards.
Technical Paper

Enhancement of Vehicle Dynamics Model Using Genetic Algorithm and Estimation Theory

2003-03-03
2003-01-1281
A determination of the vehicle states and tire forces is critical to the stability of vehicle dynamic behavior and to designing automotive control systems. Researchers have studied estimation methods for the vehicle state vectors and tire forces. However, the accuracy of the estimation methods is closely related to the employed model. In this paper, tire lag dynamics is introduced in the model. Also application of estimation methods in order to improve the model accuracy is presented. The model is developed by using the global searching algorithm, a Genetic Algorithm, so that the model can be used in the nonlinear range. The extended Kalman filter and sliding mode observer theory are applied to estimate the vehicle state vectors and tire forces. The obtained results are compared with measurements and the outputs from the ADAMS full vehicle model. [15]
Technical Paper

Evaluation of Heavy Tractor-Trailer Model used in the National Advanced Driving Simulator

2003-03-03
2003-01-1324
This paper evaluates the heavy tractor-trailer handling dynamics model used in the National Advanced Driving Simulator. The comparison between simulation and experiments were done using lane change, slowly increasing steer, pulse steer, step steer, and straight-line braking maneuvers. The paper discusses tractor-trailer instrumentation and the results of field experiments.
Technical Paper

Evaluation of VDANL and VDM RoAD for Predicting the Vehicle Dynamics of a 1994 Ford Taurus

1997-02-24
970566
The paper presents an evaluation of two vehicle dynamics simulations: “Vehicle Dynamics Analysis, Non-Linear” (VDANL) from Systems Technology, Inc. and “Vehicle Dynamics Models for Roadway Analysis and Design” (VDM RoAD) from the University of Michigan Transportation Research Institute. The versions of these simulations are being developed for the Federal Highway Administration (FHWA). Working in cooperation with the FHWA, the National Highway Traffic Safety Administration's (NHTSA) Vehicle Research and Test Center (VRTC) in East Liberty, Ohio, has evaluated these simulations. An extensive vehicle parameter measurement and field testing program has been performed using a 1994 Ford Taurus to provide simulation parameters and to “benchmark” data for the simulation evaluation.
Technical Paper

Evaluation of a Shock Model for Vehicle Simulation

2007-04-16
2007-01-0845
This paper describes the development of a more accurate shock absorber model in order to obtain better vehicle simulation results. Previous shock models used a single spline to represent shock force versus shock velocity curves. These models produced errors in vehicle simulations because the damper characteristics are better represented by the application of a hysteresis loop in the model. Thus, a new damper model that includes a hysteresis loop is developed using Matlab Simulink. The damper characteristics for the new model were extracted from measurements made on a shock dynamometer. The new model better represents experimental shock data. The new shock model is incorporated into two different lumped-parameter vehicle models: one is a three degree-of-freedom vehicle handling model and the other is a seven degree-of-freedom vehicle ride model. The new damper model is compared with the previous model for different shock mileages (different degrees of wear).
Technical Paper

Heavy Tractor-Trailer Vehicle Dynamics Modeling for the National Advanced Driving Simulator

2003-03-03
2003-01-0965
This paper presents the development of a real-time vehicle dynamics model of the heavy tractor-trailer combination used in the National Advanced Driving Simulator. The model includes multi-body dynamics of the tractor and trailer chassis, suspension, and steering mechanisms. The rigid body model is formulated using recursive multi-body dynamics code. This model is augmented with subsystem models that include tires, leaf springs, brakes, steering system, and aerodynamic drag. This paper also presents parameter measurement and estimations used to set up the model. Also included are models for brake fade, steering torque resistance, and defective tires.
Technical Paper

Improving Steering Feel for the National Advanced Driving Simulator

1997-02-24
970567
The National Highway Traffic Safety Administration's Vehicle Research and Test Center (VRTC) plans to evolve the state-of-the-art of steering system modeling for driving simulators with the ultimate goal being the development of a high fidelity steering feel model for the National Advanced Driving Simulator (NADS). The VRTC plans on developing reliable research tools that can be used to determine the necessary features for a steering model that will provide good objective and subjective steering feel. This paper reviews past and continuing work conducted at the VRTC and provides a plan for future work that will achieve this goal.
X