Refine Your Search

Search Results

Standard

Brazed Double Wall Low-Carbon Steel Tubing

2013-06-12
HISTORICAL
J527_201306
This SAE Standard covers brazed double wall low-carbon steel tubing intended for general automotive, refrigeration, hydraulic, and other similar applications requiring tubing of a suitable quality for bending, flaring, beading, forming, and brazing.
Standard

Brazed Double Wall Low-Carbon Steel Tubing

2017-10-25
CURRENT
J527_201710
This SAE Standard covers brazed double wall low-carbon steel tubing intended for general automotive, refrigeration, hydraulic, and other similar applications requiring tubing of a suitable quality for bending, flaring, beading, forming, and brazing.
Standard

Carbon Steel Tubing for General Use - Understanding Nondestructive Testing for Carbon Steel Tubing

2013-05-14
HISTORICAL
J2592_201305
This SAE information report provides a means to understand the various methods of evaluating the integrity of steel tubing without the need of destroying the tubing. This report describes eddy current testing, flux leakage testing, ultrasonic testing, and magnetic particle testing of steel tubing. The primary purpose of these methods of testing steel tubing is to look for flaws in the tubing, such as discontinuities, seams, cracks, holes, voids and other imperfections characteristic to the specific construction of the tubing.
Standard

Carbon Steel Tubing for General Use Understanding Nondestructive Testing for Carbon Steel Tubing

2019-01-04
CURRENT
J2592_201901
This Information Report describes eddy current testing, flux leakage testing, ultrasonic testing, and magnetic particle testing of steel tubing. The purpose of these testing methods is to expose flaws in the tube material or weld zone, such as discontinuities, seams, cracks, holes, voids, and other imperfections characteristic to the specific construction of the tubing. When agreed upon between the producer and purchaser, nondestructive testing is used in lieu of destructive hydrostatic pressure proof testing. Aircraft and Aerospace applications were not considered during the preparation of this document.
Standard

Carbon Steel Tubing for General Use— Understanding Nondestructive Testing for Carbon Steel Tubing

2006-06-26
HISTORICAL
J2592_200606
This SAE information report provides a means to understand the various methods of evaluating the integrity of steel tubing without the need of destroying the tubing. This report describes eddy current testing, flux leakage testing, ultrasonic testing, and magnetic particle testing of steel tubing. The primary purpose of these methods of testing steel tubing is to look for flaws in the tubing, such as discontinuities, seams, cracks, holes, voids and other imperfections characteristic to the specific construction of the tubing.
Standard

Carbon and Steel Alloy Tube Conductor Assemblies for Fluid Power and General Use—Test Methods for Hydraulic Fluid Power Metallic Tube Assemblies

2010-03-09
HISTORICAL
J2658_201003
This SAE standard recommends the use of ISO 19879 to perform various types of tests to evaluate functional performance requirements for carbon and steel alloy tube conductor assemblies for hydraulic fluid power applications made from both standard and non-standard metallic tubing and components. See the appropriate listed SAE or ISO tubing and connector standard for chemical, mechanical and dimensional requirements for standard tubing, end components and tube end joint configurations for the standard tube assemblies being tested. See SAE J1065 and ISO 10763 for listed nominal reference working pressures and/or reference formula that may be used to calculate reference-working pressures for standard and non-standard metallic tube conductors.
Standard

High Strength, 304/304L Stainless Steel Tubing

2019-10-14
CURRENT
J3135_201910
This SAE standard covers both “welded and cold drawn” and “seamless” stainless steel pressure tubing in the as-cold-drawn high strength condition intended for use as high pressure hydraulic lines and other applications requiring corrosion resistance. Welding, brazing, or other thermal processing methods that subject the tube material or assembly to elevated temperatures may compromise the strength of the tubing.
Standard

Metallic Tube Conductor Assemblies for Fluid Power and General Use—Test Methods for Hydraulic Fluid Power Metallic Tube Assemblies

2003-07-29
HISTORICAL
J2658_200307
This SAE standard specifies uniform methods for various types of tests to evaluate functional performance requirements for metallic tube conductor assemblies for hydraulic fluid power applications made from both standard and non-standard metallic tubing and components. See the appropriate listed SAE or ISO tubing and connector standard for chemical, mechanical and dimensional requirements for standard tubing, end components and tube end joint configurations for the standard tube assemblies being tested. See SAE J1065 and ISO 10763 for listed nominal reference working pressures and/or reference formula that may be used to calculate reference working pressures for standard and non-standard metallic tube conductors.
Standard

Nominal Reference Working Pressures for Steel Hydraulic Tubing

2022-07-26
CURRENT
J1065_202207
This SAE Information Report is intended to provide design guidance in the selection of steel tubing and related tube fittings for general hydraulic system applications. The information presented herein is based on tubing products which conform to SAE and ISO standards listed in the reference section. All pressure rating data found in the charts included in this document are calculated per the formula found in ISO 10763 and the main body of this document.
Standard

Recommended Practices for Fluid Conductor Carbon, Alloy and High Strength Low Alloy Steel Tubing Applications-Part 2: General Specifications and Performance Requirements

2018-04-09
CURRENT
J2551/2_201804
These recommended practices provide recommendations for general specifications and performance requirements of carbon, alloy and high strength low alloy steel tube assemblies for fluid power applications utilizing commonly available manufacturing methods and general guidelines for tube selection and application.
Standard

Recommended Practices for Fluid Conductor Carbon, Alloy and High Strength Low Alloy Steel Tubing Applications-Part 2: General Specifications and Performance Requirements

2013-02-21
HISTORICAL
J2551/2_201302
These recommended practices provide recommendations for general specifications and performance requirements of carbon, alloy and high strength low alloy steel tube assemblies for fluid power applications utilizing commonly available manufacturing methods and general guidelines for tube selection and application.
Standard

Recommended Practices for Fluid Conductor Metallic Tubing Applications

2001-12-13
HISTORICAL
J2551_200112
These recommended practices provide general recommendations for designing and fabricating metallic tubes and tube assemblies for fluid power applications utilizing commonly available manufacturing methods and general guidelines for tube selection and application. These documents are primarily intended for mobile/stationary industrial equipment and automotive applications. Aircraft and Aerospace applications were not considered during the preparation of this document.
Standard

WELDED LOW-CARBON STEEL TUBING

1996-02-01
HISTORICAL
J526_199602
This SAE Standard covers welded single-wall low-carbon steel tubing intended for general automotive applications and other similar uses.
Standard

Welded Flash Controlled, High Strength (500 MPa Tensile Strength) Hydraulic Tubing, for Bending, Double Flaring, Cold Forming, Welding, and Brazing

2017-10-12
CURRENT
J2613_201710
This SAE Standard covers sub-critically annealed or normalized electric resistance welded flash controlled single-wall high strength steel tubing intended for use in hydraulic pressure lines and in other applications requiring tubing of a quality suitable for bending, double flaring, cold forming, welding and brazing. Material produced to this specification is not intended to be used for single flare applications due to the potential leak path caused by the ID weld bead. Nominal reference working pressures for this tubing are listed in ISO 10763 for metric tubing and SAE J1065 for inch tubing. This specification also covers SAE J2613 Type-A tubing. The mechanical properties and performance requirements of standard SAE J2613 and SAE J2613 Type-A are the same. The designated differences of Type-A tubing do not imply that Type-A tubing is in anyway inferior to standard SAE J2613.
Standard

Welded Flash Controlled, High Strength (500 MPa Tensile Strength) Hydraulic Tubing, for Bending, Double Flaring, Cold Forming, Welding, and Brazing

2022-02-11
WIP
J2613
This SAE Standard covers sub-critically annealed or normalized electric resistance welded flash controlled single-wall high strength steel tubing intended for use in hydraulic pressure lines and in other applications requiring tubing of a quality suitable for bending, double flaring, cold forming, welding and brazing. Material produced to this specification is not intended to be used for single flare applications due to the potential leak path caused by the ID weld bead. Nominal reference working pressures for this tubing are listed in ISO 10763 for metric tubing and SAE J1065 for inch tubing. This specification also covers SAE J2613 Type-A tubing. The mechanical properties and performance requirements of standard SAE J2613 and SAE J2613 Type-A are the same. The designated differences of Type-A tubing do not imply that Type-A tubing is in anyway inferior to standard SAE J2613.
Standard

Welded Flash Controlled, High Strength (500 MPa Tensile Strength) Low Alloy Steel Hydraulic Tubing, Sub-Critically Annealed for Bending, Double Flaring, and Bending

2009-09-08
HISTORICAL
J2613_200909
This SAE Standard covers sub-critically annealed electric resistance welded flash controlled single-wall high strength low alloy steel tubing intended for use in hydraulic pressure lines and in other applications requiring tubing of a quality suitable for bending, double flaring, cold forming, welding and brazing. Material produced to this specification is not intended to be used for single flare applications due to the potential leak path that would be caused by the ID weld bead. The grade of material produced to this specification is of micro-alloy content and is considerably stronger and intended to service higher pressure applications than like sizes of the grades of material specified in SAE J356 and SAE J2435. Due to the alloy content of the material, the forming characteristics of the finished tube are equal to or better, when compared to SAE J356 and SAE J2435.
X