Refine Your Search

Topic

Search Results

Standard

AEROSPACE STANDARD, GLAND DESIGN, O-RING AND OTHER ELASTOMERIC SEALS

1993-06-11
HISTORICAL
AS4716
This SAE Aerospace Standard provides standardized gland (groove) design criteria and dimensions for elastomeric seal glands for static and dynamic applications. The glands have been specifically designed for applications using SAE AS568 size O-rings at pressures exceeding 1500 psi utilizing one or two anti-extrusion (backup) rings and applications at pressures under 1500 psi without backup rings. The glands have been sized to provide sufficient squeeze for effective sealing while at the same time limiting squeeze to allow satisfactory operation in dynamic applications. While specifically designed for standard size O-rings, these glands are also to be used with other elastomeric seals.
Standard

GLAND DESIGN, ELASTOMERIC O-RING SEALS, DYNAMIC RADIAL, 1500 PSI MAX

1995-05-01
HISTORICAL
ARP1233
This document establishes standard gland design criteria and dimensions for dynamic radial O-ring seal applications and provides recommendations for modifying these glands in special applications. There are no provisions in this document for anti-extrusion devices.
Standard

GLAND DESIGN, ELASTOMERIC O-RING SEALS, STATIC RADIAL

1973-04-01
HISTORICAL
ARP1232
This document establishes standard gland dimensions for static radial O-ring seal applications and provides recommendations for modifying these glands in special applications. No provisions are made in this document for anti-extrusion devices. SI unit conversions for U.S. customary units have been provided for reference purposes.
Standard

Gland Design Criteria and Dimensions for Dynamic Radial O-Ring Seal Applications Specifically for Engine and Engine Control Systems Operating at 1500 psi Max

2021-04-14
CURRENT
ARP1233B
This document recommends standard gland design criteria and dimensions for dynamic radial O-ring seal applications specifically for engine and engine control systems operating at pressures up to a maximum of 1500 psi (10342.14 kPa) and provides recommendations for modifying these glands in special applications. There are no provisions in this document for anti-extrusion devices. NOTE: The criteria set forth here are similar to but not identical with those in MIL-G-5514 and AS4716. This document is not intended to replace MIL-G-5514 or AS4716 for hydraulic applications.
Standard

Gland Design, Elastomeric O-Ring Seals, Dynamic Radial, 1500 psi Max

2012-11-01
HISTORICAL
ARP1233A
This document establishes standard gland design criteria and dimensions for dynamic radial O-ring seal applications and provides recommendations for modifying these glands in special applications. There are no provisions in this document for anti-extrusion devices.
Standard

Gland Design, Elastomeric O-Ring Seals, Static Radial

2012-10-19
HISTORICAL
ARP1232B
This document establishes standard gland dimensions for static radial O-ring seal applications and provides recommendations for modifying these glands in special applications. No provisions are made in this document for anti-extrusion devices. SI unit conversions for U.S. customary units have been provided for reference purposes.
Standard

Gland Design, O-ring and Other Elastomeric Seals

2011-03-14
HISTORICAL
AS4716B
This SAE Aerospace Standard (AS) provides standardized gland (groove) design criteria and dimensions for elastomeric seal glands for static and dynamic applications. The glands have been specifically designed for applications using SAE AS568 size O-rings, with related class 2 tolerances, at pressures exceeding 1500 psi (10.34 MPa) utilizing one or two anti-extrusion (backup) rings and applications at pressures below 1500 psi (10.34 MPa) without backup rings. The glands have been sized to provide sufficient squeeze for effective sealing while at the same time limiting squeeze to allow satisfactory operation in dynamic applications. While this specification covers the basic design criteria and recommendations for use with standard size O-rings, these glands are also suitable for use with other elastomeric, and polytetrafluoroethylene (PTFE) based seals.
Standard

Gland Design, O-ring and Other Elastomeric Seals

2005-07-21
HISTORICAL
AS4716A
This SAE Aerospace Standard (AS) provides standardized gland (groove) design criteria and dimensions for elastomeric seal glands for static and dynamic applications. The glands have been specifically designed for applications using SAE AS568 size O-rings, with related class 2 tolerances, at pressures exceeding 1500 psi (10,342 kPa) utilizing one or two anti-extrusion (backup) rings and applications at pressures under 1500 psi (10,342 kPa) without backup rings. The glands have been sized to provide sufficient squeeze for effective sealing while at the same time limiting squeeze to allow satisfactory operation in dynamic applications. While this specification covers the basic design criteria and recommendations for use with standard size O-rings, these glands are also suitable for use with other elastomeric, and polytetrafluoroethylene (PTFE) based seals and packings.
Standard

Gland Design, O-ring and Other Elastomeric Seals, Static Applications

2005-03-30
HISTORICAL
AS5857
This SAE Aerospace Standard (AS) provides standardized gland (groove) design criteria and dimensions for elastomeric seal glands for static applications. The glands have been specifically designed for applications using SAE AS568 size O-rings at pressures exceeding 1500 psi (10.3 MPa) utilizing one or two anti-extrusion (backup) rings and applications at pressures under 1500 psi (10.3 MPa) without backup rings. The glands have been sized to provide increased squeeze as compared to AS4716 for more effective sealing at low temperatures and low seal swell conditions. These glands are not recommended for dynamic use. Primary usage is for static external sealing. The rod dimensions are the same as AS4716. The cylinder bore dimensions are the same as AS4716 except for sizes -001 thru -011 and -104 thru -113.
Standard

Hydraulic and Pneumatic Retainers (Backup Rings), Polytetrafluoroethylene (PTFE) Resin

2020-01-03
CURRENT
AS8791D
This specification and part standard specifies polytetrafluoroethylene (PTFE) resin material and the dimensional requirements for scarf-cut retainers (backup rings) previously specified by MIL-R-8791 and MIL-R-8791/1. The retainers are intended for use in hydraulic and pneumatic system components as anti-extrusion devices in conjunction with seals and O-rings.
Standard

METALLIC SEAL RINGS FOR HIGH TEMPERATURE RECIPROCATING HYDRAULIC SERVICE

1992-07-01
HISTORICAL
AIR1077
An attempt has been made to consider all features of seal ring design including configuration, materials, hardness, dimensions, surface finishes, surface treatment, leak testing, and general quality. In addition to this, allowable cylinder breathing and general quality requirements of mating hardware are discussed. Also, at the end of this report, there is a brief paragraph on other types of seal rings.
Standard

Metallic Seal Rings for High Temperature Reciprocating Hydraulic Service

2011-12-19
CURRENT
AIR1077A
An attempt has been made to consider all features of seal ring design including configuration, materials, hardness, dimensions, surface finishes, surface treatment, leak testing, and general quality. In addition to this, allowable cylinder breathing and general quality requirements of mating hardware are discussed. Also, at the end of this report, there is a brief paragraph on other types of seal rings.
Standard

O-RING MOLDED FROM AMS-R-7362 NITRILE RUBBER MATERIAL

2021-09-15
CURRENT
AS29561C
THIS STANDARD ESTABLISHES THE DIMENSIONAL AND VISUAL QUALITY REQUIREMENTS, LOT REQUIREMENTS AND PACKAGING AND LABELING REQUIREMENTS FOR O-RINGS MOLDED FROM AMS-R-7362 NITRILE RUBBER. IT SHALL BE USED FOR PROCUREMENT PURPOSES.
X