Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 24110
Event

2024-04-23
Event

2024-04-23
Event

2024-04-23
Event

2024-04-23
Event

2024-04-23
Event

2024-04-23
Event

2024-04-23
Event

2024-04-23
Event

2024-04-23
Event

2024-04-23
Event

2024-04-23
Technical Paper

"Nickel electroformed" tools development through stereolithography (SLA) for sheet metal forming~An evaluation study

2000-06-12
2000-05-0272
Currently, advancements in Rapid Prototyping (RP) technologies have led to considerable amount of research activities and has been playing a major role in the area of tooling development for which Rapid Tooling (RT) term was coined. While rapid prototyping techniques are employed to make prototype tools, the basic idea of the rapid tooling is to produce prototype and zero series parts by using prototype tools so the parts truly represent the future production. This paper will present an evaluation of a RP and RT technique in developing tools (punch and dies) for sheet metal forming, which had been manufactured and tested. Both punch and die have been manufactured by combining Stereolithography (SL), RP technique, with nickel electroforming process. The stereolithography technique that had been utilized in developing models for the tools had been built with modeling pattern called Accurate Clear Epoxy Solid (ACES).
Technical Paper

"Quick" tools development through stereolithography (SLA) for sheet metal forming~An evaluation study

2000-06-12
2000-05-0270
Currently, advancements in Rapid Prototyping (RP) technologies have led to considerable amount of research activities and has been playing a major role in the area of tooling development for which Rapid Tooling (RT) term was coined. Rapid prototyping techniques are employed to make prototype tools. While, the basic idea of the rapid tooling is to produce prototype and zero series parts by using prototype tools so the parts truly represent the future production. This paper will present an evaluation of a RP & RT technique in developing tools (punch and dies) for sheet metal forming, which had been manufactured and tested. Both punch and die have been manufactured directly from Stereolithography (SL). The stereolithography technique that had been utilized in developing models for the tools had been built with modeling pattern called QuickCast infiltrated with Aluminum-Filled Epoxy, designated as Quick Tool.
Technical Paper

0D-1D Coupling for an Integrated Fuel Economy Control Strategy for a Hybrid Electric Bus

2011-09-11
2011-24-0083
Hybrid electric vehicles (HEVs) are worldwide recognized as one of the best and most immediate opportunities to solve the problems of fuel consumption, pollutant emissions and fossil fuels depletion, thanks to the high reliability of engines and the high efficiencies of motors. Moreover, as transport policy is becoming day by day stricter all over the world, moving people or goods efficiently and cheaply is the goal that all the main automobile manufacturers are trying to reach. In this context, the municipalities are performing their own action plans for public transport and the efforts in realizing high efficiency hybrid electric buses, could be supported by the local policies. For these reasons, the authors intend to propose an efficient control strategy for a hybrid electric bus, with a series architecture for the power-train.
Technical Paper

1-D Dynamic Modeling and Sensitivity Analysis in Product Design

2008-10-07
2008-36-0134
Sensitivity analysis is a usual method to evaluate how “sensitive” is a product performance to changes in its design variables. This type of analysis identifies the critical variables related to product performance and other aspects that may have less demanding manufacturing controls. This paper presents a case study in the automotive market, applying the 1-D dynamic modeling as an auxiliary tool to the sensitivity analysis. The objective of this procedure is to reduce physical prototypes tests. This evaluation, if taken during preliminary design of the system, could give competitive advantages, with a reduction in product development cycle time and cost.
Technical Paper

1-D Modeling and Room Temperature Experimental Measurements of the Exhaust System Backpressure: Limits and Advantages in the Prediction of Backpressure

2008-04-14
2008-01-0676
It is well known that backpressure is one of the important parameters to be minimised during the exhaust system development. Unfortunately, during the first phases of an engineering process of a new engine, engine prototypes are not available yet. Due to this the exhaust system backpressure is generally evaluated using simulation software, and/or measuring the backpressure by a flow rig test at room temperature. Goal of this paper is to compare exhaust backpressure results obtained respectively: i) at the room temperature flow rig; ii) at the engine dyno bench; iii) by simulation with one of the most common 1D fluidodynamics simulation tool (Gt-Power). A correlation of the three different techniques is presented.
Technical Paper

1-D Thermal Simulation and Experimental Validation of Li-Ion Battery Pack Liquid Cooling System

2023-09-14
2023-28-0012
The battery cooling system is one of the most critical parts for the safe and efficient operation of the Li-ion battery pack in EVs. Battery liquid cooling system is most commonly used. This paper represents a comprehensive study of the electric vehicle battery liquid cooling system design and performance using the 1D tool and experimental validation. The 1D model includes the battery thermal load, cooling system components, and different ambient conditions. The cooling system components are calibrated using the experimental performance data of the components. The 1D model is used to evaluate the effect of fan speed, ambient temperature, compressor speed, and coolant flow rate on the battery cooling system and to optimize the component sizing. The results are then experimentally validated in a climate chamber, and the simulation results show good agreement with experimental results. The study's findings provide a good understanding of the Li-ion liquid cooling system.
X