Refine Your Search

Topic

Search Results

Standard

ABRASIVE WEAR

1966-08-01
HISTORICAL
J965_196608
An enormous economic loss, as well as a waste of natural resources, is incurred world-wide as a result of wear of components and tools. Any effort expended in an attempt to reduce this loss is indeed worthwhile. The purpose of this SAE Information Report is to present the current state of knowledge of abrasive wear. This report, therefore, covers wear, or the undesired removal of metal by mechanical action, caused by abrasive particles in contact with the surface. It does not concern metal-to-metal wear or wear in the presence of an abrasive free lubricant. Abrasive wear occurs when hard particles, such as rocks, sand, or fragments of certain hard metals, slide or roll under pressure across a surface. This action tends to cut grooves across the metal surface, much like a cutting tool. Abrasive wear is of considerable importance in any part moving in relation to an abrasive.
Standard

ACOUSTIC EMISSION TEST METHODS

1991-03-01
HISTORICAL
J1242_199103
The scope of this SAE Information Report is to supply the user with sufficient information so that he may decide whether acoustic emission test methods apply to his particular inspection problem. Detailed technical information can be obtained by referring to Section 2.
Standard

ALLOY AND TEMPER DESIGNATION SYSTEMS FOR ALUMINUM

1973-09-01
HISTORICAL
J993B_197309
This standard provides systems for designating wrought aluminum and wrought aluminum alloys, aluminum and aluminum alloys in the form of castings and foundry ingot, and the tempers in which aluminum and aluminum alloy wrought products and aluminum alloy castings are produced.
Standard

ALLOY AND TEMPER DESIGNATION SYSTEMS FOR ALUMINUM

1989-01-01
HISTORICAL
J993_198901
This standard provides systems for designating wrought aluminum and wrought aluminum alloys, aluminum and aluminum alloys in the form of castings and foundry ingot, and the tempers in which aluminum and aluminum alloy wrought products and aluminum alloy castings are produced.
Standard

ALUMINUM ALLOYS - FUNDAMENTALS

1989-01-01
HISTORICAL
J451_198901
This information report is intended to give general data on the properties of aluminum and information on working, joining, forming, machining, finishing, and heat treating of aluminum.
Standard

ANODIZED ALUMINUM AUTOMOTIVE PARTS

1985-02-01
HISTORICAL
J399_198502
Automotive parts can be fabricated from either coiled sheet, flat sheet or extruded shapes. Alloy selection is governed by finish requirements, forming characteristics, and mechanical properties. Bright anodizing alloys 5657 and 52521 sheet provide a high luster and are preferred for trim which can be formed from an intermediate temper, such as H25. Bright anodizing alloy 5457 is used for parts which require high elongation and a fully annealed ("0") temper. Alloy 6463 is a medium strength bright anodizing extrusion alloy; Alloy X7016 is a high strength bright anodizing extrusion alloy primarily suited for bumper applications. To satisfy anti-glare requirements for certain trim applications, sheet alloy 5205 and extrusion alloy 6063 are capable of providing the desired low-gloss anodized finish.
Standard

AUTOMOTIVE METALLURGICAL JOINING

1970-10-01
HISTORICAL
J836_197010
This report is an abbreviated summary of metallurgical joining by welding, brazing, and soldering. It is generally intended to reflect current usage in the automotive industry; however, it does include some of the more recently developed processes. More comprehensive coverage of materials, processing details, and equipment required may be found in the Welding Handbook, Soldering Manual, and other publications of the American Welding Society and the American Society for Testing and Materials. AWS Automotive Welding Committee publications on Recommended Practices are particularly recommended for the design or product engineer. This report is not intended to cover mechanical joining such as rivets or screw fasteners, or chemical joining processes such as adhesive joining.
Standard

Abrasive Wear

2018-01-09
CURRENT
J965_201801
An enormous economic loss, as well as a waste of natural resources, is incurred world-wide as a result of wear of components and tools. Any effort expended in an attempt to reduce this loss is indeed worthwhile. The purpose of this SAE Information Report is to present the current state of knowledge of abrasive wear. This report, therefore, covers wear, or the undesired removal of metal by mechanical action, caused by abrasive particles in contact with the surface. It does not concern metal-to-metal wear or wear in the presence of an abrasive free lubricant. Abrasive wear occurs when hard particles, such as rocks, sand, or fragments of certain hard metals, slide or roll under pressure across a surface. This action tends to cut grooves across the metal surface, much like a cutting tool. Abrasive wear is of considerable importance in any part moving in relation to an abrasive.
Standard

Acoustic Emission Test Methods

2018-01-09
CURRENT
J1242_201801
The scope of this SAE Information Report is to supply the user with sufficient information so that he may decide whether acoustic emission test methods apply to his particular inspection problem. Detailed technical information can be obtained by referring to Section 2.
Standard

Aging of Carbon Steel Sheet and Strip

1991-04-01
CURRENT
J763_199104
This SAE Information Report briefly covers the aging of hot rolled, cold rolled, and coated carbon steel sheet and strip. Its purpose is to provide general information concerning the phenomenon of aging so that associated problems may be recognized.
Standard

Alloy and Temper Designation Systems for Aluminum

2018-01-09
CURRENT
J993_201801
This standard provides systems for designating wrought aluminum and wrought aluminum alloys, aluminum and aluminum alloys in the form of castings and foundry ingot, and the tempers in which aluminum and aluminum alloy wrought products and aluminum alloy castings are produced.
Standard

Aluminum Alloys - Fundamentals

2018-01-10
CURRENT
J451_201801
This information report is intended to give general data on the properties of aluminum and information on working, joining, forming, machining, finishing, and heat treating of aluminum.
Standard

Anodized Aluminum Automotive Parts

2023-05-22
CURRENT
J399_202305
Automotive parts can be fabricated from either coiled sheet, flat sheet or extruded shapes. Alloy selection is governed by finish requirements, forming characteristics, and mechanical properties. Bright anodizing alloys 5657 and 52521 sheet provide a high luster and are preferred for trim which can be formed from an intermediate temper, such as H25. Bright anodizing alloy 5457 is used for parts which require high elongation and a fully annealed ("0") temper. Alloy 6463 is a medium strength bright anodizing extrusion alloy; Alloy X7016 is a high strength bright anodizing extrusion alloy primarily suited for bumper applications. To satisfy anti-glare requirements for certain trim applications, sheet alloy 5205 and extrusion alloy 6063 are capable of providing the desired low-gloss anodized finish.
Standard

Automotive Austempered Ductile (Nodular) Iron Castings (ADI)

2018-01-09
CURRENT
J2477_201801
This SAE Standard covers the mechanical and physical property requirements for Austempered Ductile Iron (ADI) castings used in automotive and allied industries. Specifically covered are: a Hardness b Tensile Strength c Yield Strength d Elongation e Modulus of Elasticity f Impact Energy g Microstructure In this document SI units are primary and in-lb units are derived. Appendix A provides general information and related resources on the microstructural, chemical and heat treatment requirements to meet the mechanical properties needed for ADI in particular service conditions and applications.
Standard

Automotive Austempered Ductile (Nodular) Iron Castings (ADI)

2004-05-26
HISTORICAL
J2477_200405
This SAE Standard covers the mechanical and physical property requirements for Austempered Ductile Iron (ADI) castings used in automotive and allied industries. Specifically covered are: a Hardness b Tensile Strength c Yield Strength d Elongation e Modulus of Elasticity f Impact Energy g Microstructure In this document SI units are primary and in-lb units are derived. Appendix A provides general information and related resources on the microstructural, chemical and heat treatment requirements to meet the mechanical properties needed for ADI in particular service conditions and applications.
Standard

Automotive Compacted Graphite Iron Castings

2007-12-17
HISTORICAL
J1887_200712
This SAE Standard covers the mechanical and physical requirements for Compacted Graphite Iron (CGI) castings used in automotive and allied industries. Requirements in this document include: a Tensile Strength b Yield Strength c Elongation d Graphite Morphology
X