Refine Your Search

Topic

Search Results

Technical Paper

100 Hour Endurance Testing of a High Output Adiabatic Diesel Engine

1994-03-01
940951
An advanced low heat rejection engine concept has successfully completed a 100 hour endurance test. The combustion chamber components were insulated with thermal barrier coatings. The engine components included a titanium piston, titanium headface plate, titanium cylinder liner insert, M2 steel valve guides and monolithic zirconia valve seat inserts. The tribological system was composed of a ceramic chrome oxide coated cylinder liner, chrome carbide coated piston rings and an advanced polyolester class lubricant. The top piston compression ring Included a novel design feature to provide self-cleaning of ring groove lubricant deposits to prevent ring face scuffing. The prototype test engine demonstrated 52 percent reduction in radiator heat rejection with reduced intake air aftercooling and strategic forced oil cooling.
Technical Paper

Adiabatic Engine Trends-Worldwide

1987-02-01
870018
Since the early inception of the adiabatic diesel engine in 1974, marked progress has taken place as a result of research efforts performed all over the world. The use of ceramics for heat engines in production applications has been limited to date, but is growing. Ceramic use for production heat engine has included: combustion prechambers, turbochargers, exhaust port liners, top piston ring inserts, glow plugs, oxygen sensors; and additional high temperature friction and wear components. The potential advantages of an adiabatic engine vary greatly with specific application (i.e., commercial vs. military, stationary vs. vehicular, etc.), and thus, a better understanding of the strengths and weaknesses (and associated risks) of advanced adiabatic concepts with respect to materials, tribology, cost, and payoff must be obtained.
Technical Paper

Advancements in High Temperature Cylinder Liner and Piston Ring Tribology

2000-03-06
2000-01-1237
The high temperature tribology issue for uncooled Low Heat Rejection (LHR) diesel engines where the cylinder liner piston ring interface exceeds temperatures of 225°C to 250°C has existed for decades. It is a problem that has persistently prohibited advances in non-watercooled LHR engine development. Though the problem is not specific to non-watercooled LHR diesel engines, it is the topic of this research study for the past two and one half years. In the late 1970s and throughout the 1980s, a tremendous amount of research had been placed upon the development of the LHR diesel engine. LHR engine finite element design and cycle simulation models had been generated. Many of these projected the cylinder liner piston ring top ring reversal (TRR) temperature to exceed 540°C[1]. In order for the LHR diesel to succeed, a tribological solution for these high TRR temperatures had to be developed.
Technical Paper

Advances in High Temperature Components for the Adiabatic Engine

1991-02-01
910457
An advanced low heat rejection engine concept has been selected based on a trade-off between thermal insulating performance and available technology. The engine concept heat rejection performance is limited by available ring-liner tribology and requires cylinder liner cooling to control the piston top ring reversal temperature. This engine concept is composed of a titanium piston, headface plate and cylinder liner insert with thermal barrier coatings. Monolithic zirconia valve seat inserts, and thermal barrier coated valves and intake-exhaust ports complete the insulation package. The tribological system is composed of chrome oxide coated cylinder, M2 steel top piston ring, M2 steel valve guides, and an advanced polyol ester class lubricant.
Technical Paper

Assessment of Thin Thermal Barrier Coatings for I.C. Engines

1995-02-01
950980
This paper investigates theoretically the effects of heat transfer characteristics, such as crank-angle phasing and wall temperature swings, on the thermodynamic efficiency of an IC engine. The objective is to illustrate the fundamental physical basis of applying thin thermal barrier coatings to improve the performance of military and commercial IC engines. A simple model illustrates how the thermal impedance and thickness of coatings can be manipulated to control heat transfer and limit the high temperatures in engine components. A friction model is also included to estimate the overall improvement in engine efficiency by the proper selection of coating thickness and material.
Technical Paper

Ceramics in Heat Engines

1979-02-01
790645
Recent developments of high performance ceramics have given a new impetus for the advancement of heat engines. The thermal efficiencies of the Otto, Diesel, Brayton and the Stirling cycle can now be improved by higher operating temperatures, reduced heat loss, and exhaust energy recovery. Although physical and chemical properties of the high performance ceramics have been improved significantly, they still fall short of meeting the requirements necessary for application and commercialization of advanced heat engine concepts. Aside from the need for greater strength, the problems of consistency, quality, design, material inspection, insulative properties, oxidation and other important features must be solved before high performance ceramics can be considered a viable material for advanced heat engines. Several approaches in developing an adiabatic engine design in the laboratory are shown.
Technical Paper

Coatings for Improving Engine Performance

1997-02-24
970204
Thermal barrier coatings are becoming increasingly important in providing thermal insulation for heat engine components. Thermal insulation reduces in-cylinder heat transfer from the engine combustion chamber as well as reducing component structural temperatures. Containment of heat also contributes to increased in-cylinder work and offers higher exhaust temperatures for energy recovery. Lower component structural temperatures will result in greater durability. Advanced ceramic composite coatings also offer the unique properties that can provide reductions in friction and wear. Test results and analysis to evaluate the performance benefits of thin thermal barrier coated components in a single cylinder diesel engine are presented.
Technical Paper

Combustion and Performance Characteristics of a Low Heat Rejection Engine

1993-03-01
930988
The purpose of this paper is to investigate combustion and performance characteristics for an advanced class of diesel engines which support future Army ground propulsion requirements of improved thermal efficiency, reduced system size and weight, and enhanced mobility. Advanced ground vehicle engine research represents a critical building block for future Army vehicles. Unique technology driven engines are essential to the development of compact, high-power density ground propulsion systems. Through an in-house analysis of technical opportunities in the vehicle ground propulsion area, a number of dramatic payoffs have been identified as being achievable. These payoffs require significant advances in various areas such as: optimized combustion, heat release phasing, and fluid flow/fuel spray interaction. These areas have been analyzed in a fundamental manner relative to conventional and low heat rejection “adiabatic” engines.
Technical Paper

Cummins/TACOM Adiabatic Englue Program

1985-02-25
850356
Joint development of the adiabatic engine by Cummins Engine Company and the U. S. Army began with a feasibility analysis ten years ago. The effort was initially driven by the expectation of substantial performance improvement, a reduction in cooling system size, and several additional benefits. Program emphasis turned quickly to experimentation with the goal of demonstrating the feasibility of the adiabatic engine in working hardware. Several significant achievements were realized as have been reported earlier. Further development of the adiabatic engine is expected to be more evolutionary, paced by available technology in the areas of materials and tribology. Analysis capability necessary for insulated engine development has been found to be inadequate. Additional effort has gone into the development and validation of insulated engine analysis tools, both for cycle simulation and structural modeling.
Technical Paper

Cummins/TACOM Advanced Adiabatic Engine

1984-02-01
840428
Cummins Engine Company, Inc. and the U.S. Army have been jointly developing an adiabatic turbocompound engine during the last nine years. Although progress in the early years was slow, recent developments in the field of advanced ceramics have made it possible to make steady progress. It is now possible to reconsider the temperature limitation imposed on current heat engines and its subsequent influence on higher engine efficiency when using an exhaust energy utilization system. This paper presents an adiabatic turbocompound diesel engine concept in which high performance ceramics are used in its design. The adiabatic turbocompound engine will enable higher operating temperatures, reduced heat loss, and higher exhaust energy recovery, resulting in higher thermal engine efficiency. This paper indicates that the careful selection of ceramics in engine design is essential.
Technical Paper

Cummins–TARADCOM Adiabatic Turbocompound Engine Program

1981-02-01
810070
This paper describes the progress on the Cummins-TARADCOM adiabatic turbocompound diesel engine development program. An adiabatic diesel engine system adaptable to the use of high performance ceramics which hopefully will enable higher operating temperatures, reduced heat loss, and turbo-charged exhaust energy recovery is presented. The engine operating environments as well as the thermal and mechanical loadings of the critical engine components are covered. Design criteria are presented and techniques leading to its fulfillment are shown. The present shortcomings of the high performance ceramic design in terms of meeting reliability and insulation targets are discussed, and the needs for composite designs are shown. A ceramic design methodology for an insulated engine component is described and some of the test results are shown. Other possible future improvements such as the minimum friction-unlubricated engine through the use of ceramics are also described.
Technical Paper

Diesel Engine Cylinder Bore Coating for Extreme Operating Conditions

2007-04-16
2007-01-1439
Adiabatics, Inc., with the support of the U.S. Army Tank Automotive Research & Development Engineering Center (TARDEC) has developed a low cost, durable ceramic composite cylinder bore coating for diesel engines operating under severe conditions. This bore coating is a ceramic composite consisting primarily of Iron Oxide, Iron Titanate and Partially Stabilized Zirconia. It is applied by unique chemical thermal bonding technology developed at Adiabatics, Inc. and is referred to as Low Temperature Iron Titanate (LTIT). This coating has been tested against a wide range of cylinder bore treatments ranging from hard chrome plate to hard Nickel Silicon Carbide (NikaSil) and found to provide a superior sliding wear surface. It is superior because it is compatible against most common piston ring materials and coatings.
Technical Paper

Engine Component Design Methodology for Ceramic and Ceramic-Matrix Composite Materials

1988-02-01
880193
In the past two years, significant progress has been made in the application of ceramic-matrix composite materials to low heat rejection engine components. However, past R&D programs have identified a number of critical areas which require additional effort including: Life Prediction Methodology, Non-Destructive Testing, Design Methods, Data Base Development, and Verification of Design Rules. This paper discusses an integrated design methodology for addressing these research needs. The paper concludes with a specific example of a ceramic fiber-reinforced metal matrix composite piston which has been designed for application to advanced adiabatic engines.
Technical Paper

Experimental Determination of the Instantaneous Frictional Torque in Multicylinder Engines

1996-10-01
962006
An experimental method for determining the Instantaneous Frictional Torque (IFT) using pressure transducers on every cylinder and speed measurements at both ends of the crankshaft is presented. The speed variation measured at one end of the crankshaft is distorted by torsional vibrations making it difficult to establish a simple and direct correlation between the acting torque and measured speed. Using a lumped mass model of the crankshaft and modal analysis techniques, the contributions of the different natural modes to the motion along the crankshaft axis are determined. Based on this model a method was devised to combine speed measurements made at both ends of the crankshaft in such a way as to eliminate the influence of torsional vibrations and obtain the equivalent rigid body motion of the crankshaft. This motion, the loading torque and the gas pressure torque are utilized to determine the IFT.
Technical Paper

High Temperature Engine Component Exploratory Design Development

1989-02-01
890296
Significant progress has been achieved in the development of advanced high-temperature, insulated, in-cylinder components for high-power-output miliraty diesel engines. Computer aided modeling and small-bore engine component testing have both been utilized extensively during the exploratory development process. Specific insulated optimal designs for the piston, cylinder headface, and cylinder liner have been identified. The designs all utilize thermal barrier coatings, titanium alloy, and interfacial air-gaps to provide thermal resistance. Finite element modeling including diesel cycle simulation has been utilized to screen and optimize material and design concepts relative to program objectives, while small-bore engine testing has been utilized to demonstrate component integrity. An improved slurry densified thermal barrier coating has been demonstrated by testing on a high temperature small-bore engine.
Technical Paper

High Temperature Tribological Coatings for Advanced Military Diesel Engines

1997-02-24
970203
Experimental results focused towards developing tribological surface coatings coupled with liquid lubricant boundary layer effects, for advanced high temperature military diesel engine applications are presented. The primary focus of this work is in the area of advanced, low heat rejection (LHR) high output diesel engines, where high temperature boundary lubrication between the piston ring and the cylinder liner wall surface is critical for successful engine operation. The target temperature focused upon in our research is an operating top ring reversal (TRR) temperature of approximately 538°C. The technology advancement used for this application involves treating porous iron oxide/titanium oxide (Fe2O3/TiO2) and molybdenum (Mo) based composite thermal sprayed coatings with chemical binders to improve coating strength, integrity, and tribological properties. This process dramatically decreases open porosity to form an almost monolithic appearing coating at the surface1.
Technical Paper

Injection Characteristics that Improve Performance of Ceramic Coated Diesel Engines

1999-03-01
1999-01-0972
Thin thermal barrier ceramic coatings were applied to a standard production direct injection diesel engine. The resultant fuel economy when compared to the standard metallic engine at full load and speed (2600) was 6% better and 3.5% better at 1600 RPM. Most coated diesel engines todate have not shown significant fuel economy one way or the other. Why are the results more positive in this particular case? The reasons were late injection timing, high injection pressure with high injection rates to provide superior heat release rates with resultant lower fuel consumption. The recent introduction of the high injection pressure fuel injection system makes it possible to have these desirable heat release rates at the premixed combustion period. Of course the same injection characteristics were applied to the standard and the thin thermal barrier coating case. The thin thermal barrier coated engine displayed superior heat release rate.
Technical Paper

Innovative Composite Structure Design for Blast Protection

2007-04-16
2007-01-0483
An advanced design methodology is developed for innovative composite structure concepts which can be used in the Army's future ground vehicle systems to protect vehicle and occupants against various explosives. The multi-level and multi-scenario blast simulation and design system integrates three major technologies: a newly developed landmine-soil-composite interaction model; an advanced design methodology, called Function-Oriented Material Design (FOMD); and a novel patent-pending composite material concept, called BTR (Biomimetic Tendon-Reinforced) material. Example results include numerical simulation of a BTR composite under a blast event. The developed blast simulation and design system will enable the prediction, design, and prototyping of blast-protective composite structures for a wide range of damage scenarios in various blast events.
Technical Paper

Insulated Miller Cycle Diesel Engine

1996-02-01
961050
This paper investigates theoretically the benefits of the Miller cycle diesel engine with and without low heat rejection on thermodynamic efficiency, brake power, and fuel consumption. It further illustrates the effectiveness of thin thermal barrier coatings to improve the performance of military and commercial IC engines. A simple model which includes a friction model is used to estimate the overall improvement in engine performance. Miller cycle is accomplished by closing the intake valve late and the engine components are coated with PSZ for low heat rejection. A significant improvement in brake power and thermal efficiency are observed.
Technical Paper

Modeling and Measurement of Tribological Parameters between Piston Rings and Liner in Turbocharged Diesel Engine

2007-04-16
2007-01-1440
This paper presents tribological modeling, experimental work, and validation of tribology parameters of a single cylinder turbocharged diesel engine run at various loads, speeds, intake boost pressures, and cylinder liner temperatures. Analysis were made on piston rings and liner materials, rings mechanical and thermal loads, contact pressure between rings and liner, and lubricant conditions. The engine tribology parameters were measured, and used to validate the engine tribology models. These tribology parameters are: oil film thickness, coefficient of friction between rings and liner, friction force, friction power, friction torque, shear rate, shear stress and wear of the sliding surfaces. In order to measure the oil film thickness between rings and liner, a single cylinder AVL turbocharged diesel engine was instrumented to accept the difference in voltage drop method between rings, oil film, and liner.
X