Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

A Study of the Influence of Nozzle Orifice Geometries on Fuel Evaporation using Laser-Induced Exciplex Fluorescence

2003-05-19
2003-01-1836
Projected stringent emissions legislation will make tough demands on engine development. For diesel engines, in which combustion and emissions formation are governed by the spray formation and mixing processes, fuel injection plays a major role in the future development of cleaner engines. It is therefore important to study the fundamental features of the fuel injection process. In an engine the fuel is injected at high pressure into a pressurized and hot environment of air, which causes droplet formation and fuel evaporation. The injected fuel then forms a gaseous phase surrounding the liquid phase. The amount of evaporated fuel in relation to the total amount of injected fuel is of importance for engine performance, i.e. ignition delay and mixing rate. In this paper, the fraction of evaporated fuel was determined for sprays, using different orifice diameters ranging from 0.100 mm up to 0.227 mm, with the aid of a high-pressure spray chamber.
Technical Paper

Combustion and Emissions in a Light-Duty Diesel Engine Using Diesel-Water Emulsion and Diesel-Ethanol Blends

2009-11-02
2009-01-2695
The purpose of the investigation presented here was to compare the effects of fuel composition on combustion parameters, emissions and fuel consumption in engine tests and simulations with five fuels: a Diesel-water emulsion, a Diesel-ethanol blend, a Diesel-ethanol blend with EHN (cetane number improver), a Fischer-Tropsch Diesel and an ultra-low sulfur content Diesel. The engine used in the experiments was a light duty, single cylinder, direct injection, common rail Diesel engine equipped with a cylinder head and piston from a Volvo NED5 engine. In tests with each fuel the engine was operated at two load points (3 bar IMEP and 10 bar IMEP), and a pilot-main fuel injection strategy was applied under both load conditions. Data were also obtained from 3-D CFD simulations, using the KIVA code, to compare to the experimental results and to further analyze the effects of water and ethanol on combustion.
Technical Paper

Dual Fuel Methanol and Diesel Direct Injection HD Single Cylinder Engine Tests

2018-04-03
2018-01-0259
Laws concerning emissions from heavy duty (HD) internal combustion engines are becoming increasingly stringent. New engine technologies are needed to satisfy these new requirements and to reduce fossil fuel dependency. One way to achieve both objectives can be to partially replace fossil fuels with alternatives that are sustainable with respect to emissions of greenhouse gases, particulates and nitrogen oxides (NOx). A suitable candidate is methanol. The aim of the study presented here was to investigate the possible advantages of combusting methanol in a heavy duty Diesel engine. Those are, among others, lower particulate emissions and thereby bypassing the NOx-soot trade-off. Because of methanol’s poor auto-ignition properties, Diesel was used as an igniting sources and both fuels were separately direct injected. Therefore, two separate standard common rail Diesel injection systems were used together with a newly designed cylinder head and adapted injection nozzles.
Journal Article

Experimental Investigation of Natural Gas-Diesel Dual-Fuel RCCI in a Heavy-Duty Engine

2015-04-14
2015-01-0838
Studies have shown that premixed combustion concepts such as PCCI and RCCI can achieve high efficiencies while maintaining low NOx and soot emissions. The RCCI (Reactivity Controlled Compression Ignition) concept use blending port-injected high-octane fuel with early direct injected high-cetane fuel to control auto-ignition. This paper describes studies on RCCI combustion using CNG and diesel as the high-octane and high-cetane fuels, respectively. The test was conducted on a heavy-duty single cylinder engine. The influence of injection timing and duration of the diesel injections was examined at 9 bar BMEP and1200 rpm. In addition, experiments were conducted using two different compression ratios, (14 and 17) with different loads and engine speeds. Results show both low NOx and almost zero soot emissions can be achieved but at the expense of increasing of unburned hydrocarbon emissions which could potentially be removed by catalytic after-treatment.
Technical Paper

HCCI Combustion Using Charge Stratification for Combustion Control

2007-04-16
2007-01-0210
This work evaluates the effect of charge stratification on combustion phasing, rate of heat release and emissions for HCCI combustion. Engine experiments in both optical and traditional single cylinder engines were carried out with PRF50 as fuel. The amount of stratification as well as injection timing of the stratified charge was varied. It was found that a stratified charge can influence combustion phasing, increasing the stratification amount or late injection timing of the stratified charge leads to an advanced CA50 timing. The NOx emissions follows the CA50 advancement, advanced CA50 timing leads to higher NOx emissions. Correlation between CA50 can also be seen for HC and CO emissions when the injection timing was varied, late injection and thereby advanced CA50 timing leads to both lower HC and CO emissions.
Technical Paper

Improving the NOx/Fuel Economy Trade-Off for Gasoline Engines with the CCVS Combustion System

1994-03-01
940482
A system for stratifying recycled exhaust gas (EGR) in order to substantially increase dilution tolerance has been applied to a single cylinder manifold injected pent-roof four-valve gasoline engine. This system has been given the generic name Combustion Control by Vortex Stratification (CCVS). Preliminary research has shown that greatly improved fuel consumption is achievable at stoichiometric conditions compared to a conventional version of the same engine whilst retaining ULEV NOx levels. Simultaneously the combustion system has shown inherently low HC emissions compared to homogeneous EGR engines. A production viable variable air motion system has also been assessed which increases the effectiveness of the stratification whilst allowing full load refinement and retaining high performance.
Technical Paper

Influence of Ethanol Content in Gasoline on Speciated Emissions from a Direct Injection Stratified Charge SI Engine

2001-03-05
2001-01-1206
The influence of ethanol content in gasoline on speciated emissions from a direct injection stratified charge (DISC) SI engine is assessed. The engine tested is a commercial DISC one that has a wall guided combustion system. The emissions were analyzed using both Fourier transform infrared (FTIR) spectroscopy and conventional emission measurement equipment. Seven fuels were compared in the study. The first range of fuels was of alkylate type, designed to have 0, 5, 10 and 15 % ethanol in gasoline without changing the evaporation curve. European emissions certification fuel was tested, with and without 5 % ethanol, and finally a specially blended high volatility gasoline was also tested. The measurements were conducted at part-load, where the combustion is in stratified mode. The engine used a series engine control unit (ECU) that regulated the fuel injection, ignition and exhaust gas recirculation (EGR).
Technical Paper

Performance of a Heavy Duty DME Diesel Engine - an Experimental Study

2007-10-30
2007-01-4167
Combustion characteristics of dimethyl ether, DME, have been investigated experimentally, in a heavy duty single cylinder engine equipped with an adapted common rail fuel injection system, and the effects of varying injection timing, rail pressure and exhaust gas recirculation on the combustion and emission parameters. The results show that DME combustion does not produce soot and with the use of exhaust gas recirculation NOX emissions can also be reduced to very low levels. However, high injection pressure and/or a DME adopted combustion system is required to improve the mixing process and thus reduce the combustion duration and carbon monoxide emissions.
Technical Paper

Performance of a Heavy Duty DME Engine - the Influence of Nozzle Parameters on Combustion and Spray Development

2009-04-20
2009-01-0841
DME was tested in a heavy duty diesel engine and in an optically accessible high-temperature and pressure spray chamber in order to investigate and understand the effect of nozzle parameters on emissions, combustion and fuel spray concentration. The engine study clearly showed that smaller nozzle orifices were advantageous from combustion, efficiency and emissions considerations. Heat release analysis and fuel concentration images indicate that smaller orifices result in higher mixing rate between fuel and air due to reductions in the turbulence length scale, which reduce both the magnitude of fuel-rich regions and the steepness of fuel gradients in the spray, which enable more fuel to burn and thereby shorten the combustion duration.
Technical Paper

Reducing Pressure Fluctuations at High Loads by Means of Charge Stratification in HCCI Combustion with Negative Valve Overlap

2009-06-15
2009-01-1785
Future demands for improvements in the fuel economy of gasoline passenger car engines will require the development and implementation of advanced combustion strategies, to replace, or combine with the conventional spark ignition strategy. One possible strategy is homogeneous charge compression ignition (HCCI) achieved using negative valve overlap (NVO). However, several issues need to be addressed before this combustion strategy can be fully implemented in a production vehicle, one being to increase the upper load limit. One constraint at high loads is the combustion becoming too rapid, leading to excessive pressure-rise rates and large pressure fluctuations (ringing), causing noise. In this work, efforts were made to reduce these pressure fluctuations by using a late injection during the later part of the compression. A more appropriate acronym than HCCI for such combustion is SCCI (Stratified Charge Compression Ignition).
Technical Paper

Spark Assisted HCCI Combustion Using a Stratified Hydrogen Charge

2005-09-11
2005-24-039
Future requirements for emission reduction from combustion engines in ground vehicles might be met by using the HCCI combustion concept. In this concept a more or less homogenous air fuel mixture is compressed to auto ignition. This gives good fuel consumption compared to a normal SI engine and its ability to burn lean mixtures at low temperatures has a positive impact on exhaust emissions. However, there are challenges associated with this concept, for instance its limited operating range and combustion control. The objective of this work is to investigate a hybrid concept, based on a combination of HCCI combustion of n-heptane and SI combustion of hydrogen. The basic idea is to initiate HCCI combustion with a spark ignited stratified lean hydrogen mixture. To verify that the combustion sequence consists of flame front combustion followed by HCCI combustion, photographs of OH chemiluminescence from the combustion were taken.
Journal Article

Stratified Cold Start Sprays of Gasoline-Ethanol Blends

2009-04-20
2009-01-1496
Gasoline and gasoline-ethanol sprays from an outward-opening piezo-injector were studied in a constant volume/pressure chamber using high-speed imaging and phase doppler anemometry (PDA) under stratified cold start conditions corresponding to a vehicle ambient temperature of 243 K (−30°C/−22°F); in-cylinder air pressure of 5 bar, air temperature of 350 K (−30°C/−22°F) and fuel temperature of 243 K. The effects of varying in-cylinder pressure and temperature, fuel injection pressure and fuel temperature on the formation of gasoline, E75 and pure ethanol sprays were investigated. The results indicate that fuel composition affects spray behaviour, but less than expected. Furthermore, varying the temperature of the fuel or the air surrounding the spray also had minor effects. As expected, the fuel injection pressure was found to have the strongest influence on spray formation under stratified conditions.
Technical Paper

The Effect of Charge Air and Fuel Injection Parameters on Combustion with High Levels of EGR in a HDDI Single Cylinder Diesel Engine

2007-04-16
2007-01-0914
When increasing EGR from low levels to levels corresponding to low temperature combustion, soot emissions first start to increase (due to reductions in soot oxidation), before decreasing to almost zero (due to very low rates of soot formation). At the EGR level where soot emissions start to increase, the NOx emissions are still low, but not low enough to comply with future emission standards. The purpose of this study was therefore to investigate the possibilities for moving the so-called “soot bump” (increase in soot) to higher EGR levels or reducing the magnitude of the soot bump. This involved an experimental investigation of parameters affecting the combustion and thus the engine-out emissions. The parameters investigated were: charge air pressure, injection pressure, EGR temperature and post injection (with different dwell times) for a wide range of EGR rates.
Technical Paper

The Effects of Multirow Nozzles on Diesel Combustion

2003-03-03
2003-01-0701
In a diesel engine, the combustion and emissions formation are governed by the spray formation and mixing processes. To meet the stringent emission legislations of the future, which will demand substantial reductions of NOX and particulate emissions from diesel engines, the spray and mixing processes play a major roll. Different fuel injection systems and injection strategies have been developed to achieve better performance and lower emissions from the diesel engine almost without investigating the influence of the injector nozzle orifices. A reduction in the nozzle orifice diameter is important for an increased mixing rate and formation of smaller droplets which is beneficial from emissions and fuel consumption point of view, as long as the local air-to-fuel ratio (AFR) is kept at a sufficiently lean level.
Technical Paper

The Volvo 3-Litre 6-Cylinder Engine with 4-Valve Technology

1990-09-01
901715
During 1990, the Volvo Car Corporation will Introduce a new In-line six-cylinder engine featuring three litre displacement, twin overhead camshafts and 24 valves, designated the B6304F. The engine has been designed and adapted for Volvo's top-of-the-line model 960, and it has been developed to meet the market's high demands on comfort, performance, reliability, economy and environmental friendliness. The engine has been designed and manufactured with the help of advanced CAE technology. The engine structure consists of five basic aluminium parts. This construction contributes to the low engine weight of 182 kg including auxiliary units, oil and wiring. The engine's gas flow has been optimized with the help of data simulation and laser measurement technology so as to ensure efficient utilization of energy. Fuel injection and ignition timing are regulated and controlled by an advanced electronic control system, the Bosch Motronic 1.8.
Journal Article

Water Injection Benefits in a 3-Cylinder Downsized SI-Engine

2019-01-15
2019-01-0034
With progressing electrification of automotive powertrains and demands to meet increasingly stringent emission regulations, a combination of an electric motor and downsized turbocharged spark-ignited engine has been recognized as a viable solution. The SI engine must be optimized, and preferentially downsized, to reduce tailpipe CO2 and other emissions. However, drives to increase BMEP (Brake Mean Effective Pressure) and compression ratio/thermal efficiency increase propensities of knocking (auto-ignition of residual unburnt charge before the propagating flame reaches it) in downsized engines. Currently, knock is mitigated by retarding the ignition timing, but this has several limitations. Another option identified in the last decade (following trials of similar technology in aircraft combustion engines) is water injection, which suppresses knocking largely by reducing local in-cylinder mixture temperatures due to its latent heat of vaporization.
X