Refine Your Search

Topic

Search Results

Technical Paper

A Modeling Framework for Connectivity and Automation Co-simulation

2018-04-03
2018-01-0607
This paper presents a unified modeling environment to simulate vehicle driving and powertrain operations within the context of the surrounding environment, including interactions between vehicles and between vehicles and the road. The goal of this framework is to facilitate the analysis of the energy impacts of vehicle connectivity and automation, as well as the development of eco-driving algorithms. Connectivity and automation indeed provide the potential to use information about the environment and future driving to minimize energy consumption. To achieve this goal, the designers of eco-driving control strategies need to simulate a wide range of driving situations, including the interactions with other vehicles and the infrastructure in a closed-loop fashion.
Technical Paper

A Real-Time Intelligent Speed Optimization Planner Using Reinforcement Learning

2021-04-06
2021-01-0434
As connectivity and sensing technologies become more mature, automated vehicles can predict future driving situations and utilize this information to drive more energy-efficiently than human-driven vehicles. However, future information beyond the limited connectivity and sensing range is difficult to predict and utilize, limiting the energy-saving potential of energy-efficient driving. Thus, we combine a conventional speed optimization planner, developed in our previous work, and reinforcement learning to propose a real-time intelligent speed optimization planner for connected and automated vehicles. We briefly summarize the conventional speed optimization planner with limited information, based on closed-form energy-optimal solutions, and present its multiple parameters that determine reference speed trajectories.
Technical Paper

Advanced Automatic Transmission Model Validation Using Dynamometer Test Data

2014-04-01
2014-01-1778
As a result of increasingly stringent regulations and higher customer expectations, auto manufacturers have been considering numerous technology options to improve vehicle fuel economy. Transmissions have been shown to be one of the most cost-effective technologies for improving fuel economy. Over the past couple of years, transmissions have significantly evolved and impacted both performance and fuel efficiency. This study validates the shifting control of advanced automatic transmission technologies in vehicle systems by using Argonne National Laboratory's model-based vehicle simulation tool, Autonomie. Different midsize vehicles, including several with automatic transmission (6-speeds, 7-speeds, and 8-speeds), were tested at Argonne's Advanced Powertrain Research Facility (APRF). For the vehicles, a novel process was used to import test data.
Technical Paper

Analysis and Model Validation of the Toyota Prius Prime

2019-04-02
2019-01-0369
The Toyota Prius Prime is a new generation of Toyota Prius plug-in hybrid electric vehicle, the electric drive range of which is 25 miles. This version is improved from the previous version by the addition of a one-way clutch between the engine and the planetary gear-set, which enables the generator to add electric propulsive force. The vehicle was analyzed, developed and validated based on test data from Argonne National Laboratory’s Advanced Powertrain Research Facility, where chassis dynamometer set temperature can be controlled in a thermal chamber. First, we analyzed and developed components such as engine, battery, motors, wheels and chassis, including thermal aspects based on test data. By developing models considering thermal aspects, it is possible to simulate the vehicle driving not only in normal temperatures but also in hot, cold, or warmed-up conditions.
Technical Paper

Analyzing the Expense: Cost Modeling for State-of-the-Art Electric Vehicle Battery Packs

2024-04-09
2024-01-2202
The Battery Performance and Cost Model (BatPaC), developed by Argonne National Laboratory, is a versatile tool designed for lithium-ion battery (LIB) pack engineering. It accommodates user-defined specifications, generating detailed bill-of-materials calculations and insights into cell dimensions and pack characteristics. Pre-loaded with default data sets, BatPaC aids in estimating production costs for battery packs produced at scale (5 to 50 GWh annually). Acknowledging inherent uncertainties in parameters, the tool remains accessible and valuable for designers and engineers. BatPaC plays a crucial role in National Highway Transportation Traffic Safety Administration (NHTSA) regulatory assessments, providing estimated battery pack manufacturing costs and weight metrics for electric vehicles. Integrated with Argonne's Autonomie simulations, BatPaC streamlines large-scale processes, replacing traditional models with lookup tables.
Journal Article

Automated Model Initialization Using Test Data

2017-03-28
2017-01-1144
Building a vehicle model with sufficient accuracy for fuel economy analysis is a time-consuming process, even with the modern-day simulation tools. Obtaining the right kind of data for modeling a vehicle can itself be challenging, given that while OEMs advertise the power and torque capability of their engines, the efficiency data for the components or the control algorithms are not usually made available for independent verification. The U.S. Department of Energy (DOE) funds the testing of vehicles at Argonne National Laboratory, and the test data are publicly available. Argonne is also the premier DOE laboratory for the modeling and simulation of vehicles. By combining the resources and expertise with available data, a process has been created to automatically develop a model for any conventional vehicle that is tested at Argonne. This paper explains the process of analyzing the publicly available test data and computing the parameters of various components from the analysis.
Technical Paper

Autonomie Model Validation with Test Data for 2010 Toyota Prius

2012-04-16
2012-01-1040
The Prius - a power-split hybrid electric vehicle from Toyota - has become synonymous with the word “Hybrid.” As of October 2010, two million of these vehicles had been sold worldwide, including one million vehicles purchased in the United States. In 2004, the second generation of the vehicle, the Prius MY04, enhanced the performance of the components with advanced technologies, such as a new magnetic array in the rotors. However, the third generation of the vehicle, the Prius MY10, features a remarkable change of the configuration - an additional reduction gear has been added between the motor and the output of the transmission [1]. In addition, a change in the energy management strategy has been found by analyzing the results of a number of tests performed at Argonne National Laboratory's Advanced Powertrain Research Facility (ARRF).
Technical Paper

Comparison of Powertrain Configuration Options for Plug-in HEVs from a Fuel Economy Perspective

2012-04-16
2012-01-1027
The first commercially available plug-in hybrid electric vehicle (PHEV), the General Motors (GM) Volt, was introduced into the market in mid-December 2010. The Volt uses a series-split powertrain architecture, which provides benefits over the series architecture that typically has been considered for use in electric-range extended vehicles (EREVs). A specialized EREV powertrain, called the Voltec, drives the Volt through its entire range of speed and acceleration with battery power alone and within the limit of battery energy, thereby displacing more fuel with electricity than a PHEV, which characteristically blends electric and engine power together during driving. This paper assesses the benefits and drawbacks of these two different plug-in hybrid electric architectures (series versus series-split) by comparing component sizes, system efficiency, and fuel consumption over urban and highway drive cycles.
Journal Article

Comparison of Powertrain Configuration for Plug-in HEVs from a Fuel Economy Perspective

2008-04-14
2008-01-0461
With the success of hybrid electric vehicles (HEVs) and the still uncertain long-term solution for vehicle transportation, Plug-in Hybrid Electric Vehicles (PHEV) appear to be a viable short-term solution and are of increasing interest to car manufacturers. Like HEVs, PHEVs offer two power sources that are able to independently propel the vehicle. They also offer additional electrical energy onboard. In addition to choices about the size of components for PHEVs, choices about powertrain configuration must be made. In this paper, we consider three potential architectures for PHEVs for 10- and 40-mi All Electric Range (AER) and define the components and their respective sizes to meet the same set of performance requirements. The vehicle and component efficiencies in electric-only and charge-sustaining modes will be assessed.
Technical Paper

Complex System Engineering Simulation through Co-Simulation

2014-04-01
2014-01-1106
Many of today's advanced simulation tools are suitable for modeling specific systems, but they provide rather limited support for automated model building and management. The diverse tools available for modeling different components of a vehicle make it all the more challenging to comprehend their integration and interactions and analyze the complete system. In addition, the complexities and sizes of the models require a better use of computing resources, such as multicore or remote processing, to greatly reduce the simulation time. In this paper we describe how modern software techniques can support modeling and design activities, with the objective to create system models quickly by assembling them in a “plug-and-play” architecture. System models can be integrated, co-simulated, and reused regardless of the environment in which they are developed, and their simulation results can be consolidated for analysis into a single tool.
Journal Article

Detailed Analysis of U.S. Department of Energy Engine Targets Compared to Existing Engine Technologies

2020-04-14
2020-01-0835
The U.S. Department of Energy, Vehicle Technologies Office (U.S. DOE-VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that would enable the United States to burn less petroleum on the road. System simulation is an accepted approach for evaluating the fuel economy potential of advanced (future) technology targets. U.S. DOE-VTO defines the targets for advancement in powertrain technologies (e.g., engine efficiency targets, battery energy density, lightweighting, etc.) Vehicle system simulation models based on these targets have been generated in Autonomie, reflecting the different EPA classifications of vehicles for different advanced timeframes as part of the DOE Benefits and Scenario (BaSce) Analysis. It is also important to evaluate the progress of these component technical targets compared to existing technologies available in the market.
Technical Paper

Evolution of Hydrogen Fueled Vehicles Compared to Conventional Vehicles from 2010 to 2045

2009-04-20
2009-01-1008
Fuel cell vehicles are undergoing extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and there is limited demand for hydrogen at present, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. This paper compares the fuel economy potential of hydrogen powertrains to conventional gasoline vehicles. Several timeframes are considered: 2010, 2015, 2030, and 2045. To address the technology status uncertainty, a triangular distribution approach was implemented for each component technology. The fuel consumption and cost of five powertrain configurations will be discussed and compared with the conventional counterpart.
Journal Article

Forecasting Short to Mid-Length Speed Trajectories of Preceding Vehicle Using V2X Connectivity for Eco-Driving of Electric Vehicles

2021-04-06
2021-01-0431
In recent studies, optimal control has shown promise as a strategy for enhancing the energy efficiency of connected autonomous vehicles. To maximize optimization performance, it is important to accurately predict constraints, especially separation from a vehicle in front. This paper proposes a novel prediction method for forecasting the trajectory of the nearest preceding car. The proposed predictor is designed to produce short to medium-length speed trajectories using a locally weighted polynomial regression algorithm. The polynomial coefficients are trained by using two types of information: (1) vehicle-to-vehicle (V2V) messages transmitted by multiple preceding vehicles and (2) vehicle-to-infrastructure (V2I) information broadcast by roadside equipment. The predictor’s performance was tested in a multi-vehicle traffic simulation platform, RoadRunner, previously developed by Argonne National Laboratory.
Journal Article

Fuel Consumption and Cost Potential of Different Plug-In Hybrid Vehicle Architectures

2015-04-14
2015-01-1160
Plug-in Hybrid Electric Vehicles (PHEVs) have demonstrated the potential to provide significant reduction in fuel use across a wide range of dynamometer test driving cycles. Companies and research organizations are involved in numerous research activities related to PHEVs. One of the current unknowns is the impact of driving behavior and standard test procedure on the true benefits of PHEVs from a worldwide perspective. To address this issue, five different PHEV powertrain configurations (input split, parallel, series, series-output split and series-parallel), implemented on vehicles with different all-electric ranges (AERs), were analyzed on three different standard cycles (i.e., Urban Dynamometer Driving Schedule, Highway Fuel Economy Test, and New European Driving Cycle). Component sizes, manufacturing cost, and fuel consumption were analyzed for a midsize car in model year 2020 through the use of vehicle system simulations.
Technical Paper

Fuel Efficient Speed Optimization for Real-World Highway Cruising

2018-04-03
2018-01-0589
This paper introduces an eco-driving highway cruising algorithm based on optimal control theory that is applied to a conventionally-powered connected and automated vehicle. Thanks to connectivity to the cloud and/or to infrastructure, speed limit and slope along the future route can be known with accuracy. This can in turn be used to compute the control variable trajectory that will minimize energy consumption without significantly impacting travel time. Automated driving is necessary to the implementation of this concept, because the chosen control variables (e.g., torque and gear) impact vehicle speed. An optimal control problem is built up where quadratic models are used for the powertrain. The optimization is solved by applying Pontryagin’s minimum principle, which reduces the problem to the minimization of a cost function with parameters called co-states.
Technical Paper

Honda Insight Validation Using PSAT

2001-08-20
2001-01-2538
Argonne National Laboratory (ANL), working with the Partnership for a New Generation of Vehicles (PNGV), maintains hybrid vehicle simulation software: the PNGV System Analysis Toolkit (PSAT). The importance of component models and the complexity involved in setting up optimized control strategies require validation of the models and controls developed in PSAT. Using ANL's Advanced Powertrain Test Facilities (APTF), more than 50 tests on the Honda Insight were used to validate the PSAT drivetrain configuration. Extensive instrumentation, including the half-shaft torque sensor, provides the data needed for through comparison of model results and test data. In this paper, we will first describe the process and the type of test used to validate the models. Then we will explain the tuning of the simulated vehicle control strategy, based on the analysis of the differences between test and simulation.
Technical Paper

Impact of Advanced Engine Technologies on Energy Consumption Reduction Potentials

2024-04-09
2024-01-2825
The establishment of Corporate Average Fuel Economy (CAFE) standards by the Energy Policy and Conservation Act (EPCA) of 1975 marked a pivotal moment in the automotive industry's pursuit of greater fuel efficiency. The responsibility for the development and enforcement of these standards was assigned to the U.S. Department of Transportation (DOT), with the National Highway Traffic Safety Administration (NHTSA) assuming a critical role in their oversight and implementation. In collaboration with Argonne National Laboratory (Argonne), supported by the U.S. Department of Energy (DOE), significant strides have been made in advancing fuel efficiency through the development of Autonomie, a leading full-vehicle simulation tool. Through an Inter-Agency Agreement between the DOE Argonne Site Office and Argonne, comprehensive full-vehicle simulations are conducted to support NHTSA's CAFE rulemaking processes.
Technical Paper

Impact of Advanced Engine and Powertrain Technologies on Engine Operation and Fuel Consumption for Future Vehicles

2015-04-14
2015-01-0978
Near-term advances in spark ignition (SI) engine technology (e.g., variable value lift [VVL], gasoline direct injection [GDI], cylinder deactivation, turbo downsizing) for passenger vehicles hold promise of delivering significant fuel savings for vehicles of the immediate future. Similarly, trends in transmissions indicate higher (8-speed, 9-speed) gear numbers, higher spans, and a focus on downspeeding to improve engine efficiency. Dual-clutch transmissions, which exhibit higher efficiency in lower gears, than the traditional automatics, and are being introduced in the light-duty vehicle segment worldwide. Another development requiring low investment and delivering immediate benefits has been the adaptation of start-stop (micro hybrids or idle engine stop technology) technology in vehicles today.
Journal Article

Impact of Electric Drive Vehicle Technologies on Fuel Efficiency to Support 2017-2025 CAFE Regulations

2014-04-01
2014-01-1084
Manufacturers have been considering various technology options to improve vehicle fuel economy. Some of the most promising technologies are related to vehicle electrification. To evaluate the benefits of vehicle electrification to support the 2017-2025 CAFE regulations, a study was conducted to simulate many of the most common electric drive powertrains currently available on the market: 12V Micro Hybrid Vehicle (start/stop systems), Belt-integrated starter generator (BISG), Crank-integrated starter generator (CISG), Full Hybrid Electric Vehicle (HEV), PHEV with 20-mile all-electric range (AER) (PHEV20), PHEV with 40-mile AER (PHEV40), Fuel-cell HEV and Battery Electric vehicle with 100-mile AER (EV100). Different vehicle classes were also analyzed in the study process: Compact, Midsize, Small SUV, Midsize SUV and Pickup. This paper will show the fuel displacement benefit of each powertrain across vehicle classes.
Technical Paper

Impact of TEGs on the Fuel Economy of Conventional and Hybrid Vehicles

2015-04-14
2015-01-1712
Thermoelectric generators (TEGs) can be used for a variety of applications in automobiles. There is a lot of interest in using them for waste heat recovery from a fuel economy point of view. This paper examines the potential of TEGs to provide cost-effective improvements in the fuel economy of conventional vehicles and hybrid electric vehicles (HEVs). Simulation analysis is used to quantify fuel economy benefits. The paper explains how a TEG is used in a vehicle and explores the idea of improving the TEG design by introducing a thermal reservoir in the TEG model to improve the waste heat recovery. An effort is made to identify the technological and economic barriers (and their thresholds) that could prevent TEGs from becoming an acceptable means of waste heat recovery in automobiles.
X