Refine Your Search

Topic

Search Results

Technical Paper

A Fractal-Based SI Engine Model: Comparisons of Predictions with Experimental Data

1991-02-01
910079
A quasidimensional engine simulation which uses the concepts of fractal geometry to model the effects of turbulence on flame propagation in a homogeneous charge SI engine has been developed. Heat transfer and blowby/crevice flow submodels are included in this code and the submodels chosen are found to be reasonable. The model predictions of cylinder pressure histories are then compared with experimental data over a range of loads, equivalence ratios, and engine speeds. The model is not adjusted in any manner to yield better agreement with the data, other than by tuning the simple turbulence model used so as to yield agreement with data for the nonreacting flow. However, current information about the flame wrinkling scales in an engine is inadequate. Therefore, predictions are made for three different assumptions about the flame wrinkling scales which span the range of physically possible scales.
Technical Paper

A Multidimensional Numerical Model for Turbulent Premixed Flames with Fractal Geometries

1995-10-01
952386
We present a multidimensional numerical model that calculates turbulent premixed flame propagation, assuming the flames have fractal geometries. Two scaling transformations, previously developed for laminar flames, are used to incorporate the fractal burning model in KIVA-II1, a numerical hydrodynamics code for chemically reactive flows. In this work the model is implemented for propane/air mixtures. For applications to internal combustion engines, we have also developed a fractal model for early flame kernel growth. Our multidimensional model can be used in experimental comparisons to test postulated fractal parameters, and we begin this task by comparing calculated results with measurements of propane/air combustion in a spark ignition engine. Good agreement is obtained between computed and measured flame positions and pressures in all cases except a low engine speed case.
Technical Paper

CNG Compositions in Texas and the Effects of Composition on Emissions, Fuel Economy, and Driveability of NGVs

1996-10-01
962097
A survey of the CNG compositions within NGV driving range of Houston was performed. It was found that the statistics for the Texas CNGs were very similar to those from a previous national survey Based upon the present survey results, two extremes of CNG composition were chosen for a study of the effects of composition on emissions, fuel economy, and driveability. Two other CNG compositions were also included to provide for comparisons with the recently completed Auto/Oil Air Quality Improvement Research Program (AQIRP) and to extend the AQIRP database. One of the vehicles used in the AQIRP study was also used in the present investigation. Correlations were investigated for the relationships between the CNG composition and tailpipe emissions, fuel economy, and driveability.
Technical Paper

Coastdown Coefficient Analysis of Heavy-Duty Vehicles and Application to the Examination of the Effects of Grade and Other Parameters on Fuel Consumption

2012-09-24
2012-01-2051
To perform coastdown tests on heavy-duty trucks, both long acceleration and coasting distances are required. It is very difficult to find long flat stretches of road to conduct these tests; for a Class 8 truck loaded to 80,000 lb, about 7 miles of road is needed to complete the coastdown tests. In the present study, a method for obtaining coastdown coefficients from data taken on a road of variable grade is presented. To this end, a computer code was written to provide a fast solution for the coastdown coefficients. Class 7 and Class 8 trucks were tested with three different weight configurations: empty, “cubed-out” (fully loaded but with a payload of moderate density), and “weighed-out” (loaded to the maximum permissible weight).
Technical Paper

Combustion Modeling in SI Engines with a Peninsula-Fractal Combustion Model

1996-02-01
960072
In premixed turbulent combustion models, two mechanisms have been used to explain the increase in the flame speed due to the turbulence. The newer explanation considers the full range of turbulence scales which wrinkle the flame front so as to increase the flame front area and, thus, the flame propagation speed. The fractal combustion model is an example of this concept. The older mechanism assumes that turbulence enables the penetration of unburned mixtures across the flame front via entrainment into the burned mixture zone. The entrainment combustion or eddy burning model is an example of this mechanism. The results of experimental studies of combustion regimes and the flame structures in SI engines has confirmed that most combustion takes place at the wrinkled flame front with additional combustion taking place in the form of flame fingers or peninsulas.
Technical Paper

Condensation of Fuel on Combustion Chamber Surfaces as a Mechanism for Increased HC Emissions from SI Engines During Cold Start

1997-10-01
972884
Condensation of fuel vapor on the cold surfaces within the combustion chamber is investigated as a possible mechanism for increased HC emissions from SI engines during cold start. A one-dimensional, transient, mass diffusion analysis is used to examine the condensation of single-species fuels on the surfaces of the combustion chamber as the pressure within the cylinder rises during compression and combustion, and re-vaporization during expansion, blowdown, and exhaust. The effects of wall temperature, fuel volatility, and engine load and speed on this mechanism are also discussed. This analysis shows that low-volatility fuel components can condense on the surfaces of the combustion chamber when the surface temperatures are sufficiently low. This condensed fuel may re-vaporize during the power and exhaust strokes, or it may remain in the combustion chamber until surface temperatures rise, perhaps tens of seconds later.
Technical Paper

Conversion of a 1999 Silverado to Dedicated E85 with Emphasis on Cold Start and Cold Driveability

2000-03-06
2000-01-0590
The University of Texas Ethanol Vehicle Challenge team focused upon cold start/driveability, fuel economy, and emissions reduction for our 1999 Ethanol Vehicle Challenge entry. We replaced or coated all fuel system components that were not ethanol compatible. We used the stock PCM for all control functions except control of a novel cold-start system our team designed. The primary modifications for improved emissions control involved ceramic coating of the exhaust manifolds, use of close-coupled ethanol-specific catalysts, increased EGR for the operating conditions of the five longest cruises on the FTP, and our cold-start system that eliminates the need to overfuel the engine at the beginning of the FTP. This EGR control scheme should also benefit urban fuel economy. Additionally, we eliminated EGR at high load to improve power density.
Technical Paper

Design Details of the Compression Ignition Rotating Liner Engine. Reducing Piston Assembly Friction and Ring/Liner Wear in Heavy-Duty Diesel Engines

2012-09-24
2012-01-1963
The Rotating Liner Engine (RLE) is an engine design concept where the cylinder liner rotates in order to reduce piston assembly friction and liner/ring wear. The reduction is achieved by the elimination of the mixed and boundary lubrication regimes that occur near TDC. Prior engines for aircraft developed during WW2 with partly rotating liners (Sleeve Valve Engines or SVE) have exhibited reduction of bore wear by factor of 10 for high BMEP operation, which supports the elimination of mixed lubrication near the TDC area via liner rotation. Our prior research on rotating liner engines experimentally proved that the boundary/mixed components near TDC are indeed eliminated, and a high friction reduction was quantified compared to a baseline engine. The added friction required to rotate the liner is hydrodynamic via a modest sliding speed, and is thus much smaller than the mixed and boundary friction that is eliminated.
Technical Paper

Development of a Computationally Fast Equilibrium-Equivalent 4-Stroke SI Engine Model

1988-02-01
880130
A set of algebraic equations has been developed to replace the iterative thermochemical equilibrium subroutine in zero-dimensional and quasidimensional engine modeling codes. These equations allow calculation of the equilibrium composition given only the equivalence ratio and the fuel characteristics, thereby allowing the composition calculations to be performed external to the iterative main loop. This technique results in a decrease of the required computational time by up to a factor of 13, dependent upon the equivalence ratio and the fuel. The predictions of the equilibrium-equivalent code agree with those of a traditional equilibrium code within 2.5% for the four fuels examined (CH4, C3H8, C2H5OH, and i-C8H18) for compression ratios between 5 and 12:1, intake manifold pressures between 50 and 100 kPa, and equivalence ratios from 0.5 to 1.5. A technique for including constrained equilibrium to account for freezing of CO oxidation during the expansion stroke is also presented.
Technical Paper

Development of a Semi-Detailed Kinetics Mechanism for the Autoignition of Iso-Octane

1996-10-01
962107
A reduced autoignition mechanism for iso-octane has been developed by identifying paths to formation of the stable species measured during motoring knock experiments and eliminating paths to formation of species that were not measured. The resulting mechanism includes low-, intermediate-, and high-temperature reactions and consists of 103 species and 131 reactions. This mechanism differs from detailed models not only in the number of reactions and species, but most importantly, in the nature and rates of the degenerate chain branching reactions. To implement this mechanism, a knock subroutine has been added to a quasidimensional spark ignition engine model that accounts for heat losses, blowby, etc. Thus, errors in the reactivity predictions can be assigned almost exclusively to the kinetics. Numerical predictions of the exhaust composition during motoring knock are compared with experimental measurements as a function of compression ratio for several operating conditions.
Technical Paper

Diluents and Lean Mixture Combustion Modeling for SI Engines with a Quasi-Dimensional Model

1995-10-01
952382
Lean mixture combustion might be an important feature in the next generation of SI engines, while diluents (internal and external EGR) have already played a key role in the reductions of emissions and fuel consumption. Lean burn modeling is even more important for engine modeling tools which are sometimes used for new engine development. The effect of flame strain on flame speed is believed to be significant, especially under lean mixture conditions. Current quasi-dimensional engine models usually do not include flame strain effects and tend to predict burn rate which is too high under lean burn conditions. An attempt was made to model flame strain effects in quasi-dimensional SI engine models. The Ford model GESIM (stands for General Engine SIMulation) was used as the platform. A new strain rate model was developed with the Lewis number effect included.
Technical Paper

Direct Measurement of Powertrain Component Efficiencies for a Light-Duty Vehicle with a CVT Operating Over a Driving Cycle

2003-10-27
2003-01-3202
In order to determine the factors that affect fuel economy quantitatively, the power flows through the major powertrain components were measured during operation over transient cycles. The fuel consumption rate and torque and speed of the engine output and axle shafts were measured to assess the power flows in a vehicle with a CVT. The measured power flows were converted to energy loss for each component to get the efficiency. Tests were done at Phase 1 and Phase 3 of the FTP and for two different CVT shift modes. The measured energy distributions were compared with those from the ADVISOR simulation and to results from the PNGV study. For both the Hot 505 and the Cold 505, and for both shift modes, the major powertrain loss occurs in the engine, including or excluding standby losses. However, the efficiency of the drivetrain/transmission is important because it influences the efficiency of the engine.
Technical Paper

Effect of Fuel Parameters on Emissions from a Direct Injection Spark Ignition Engine During Constant Speed, Variable Load Tests

2000-06-19
2000-01-1909
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested at constant engine speed (2000 rpm) over a range of loads. Engine-out and tailpipe emissions of gas phase species were measured each second. This allowed examination of the engine-out emissions for late and early injection. Seven fuels were used for these tests: five blended fuels and two pure hydrocarbon fuels. These seven fuels can be divided into groups for examination of the effects of volatility, MTBE, and structure (an aromatic versus an i-alkane). Correlations between the fuel properties and their effects on emissions are presented. Use of steady state tests rather than driving cycles to examine fuel effects on emissions eliminates the complications resulting from accelerations, decelerations, and changes of injection timing but care had to be taken to account for the periodic regenerations of the lean NOx trap/catalyst.
Technical Paper

Effects of Engine Speed on Combustion in SI Engines: Comparisons of Predictions of a Fractal Burning Model with Experimental Data

1993-10-01
932714
Predictions of the Fractal Engine Simulation code were compared with SI engine data in a previous paper. These comparisons were extremely good except for the single data set available at a low engine speed. Because of uncertainty regarding whether the lack of agreement for this case resulted from some difficulty with the experimental data or was due to lack of proper speed dependence in the model, additional comparisons are made for a range of speeds from 300-1500 rpm. The fractal burning model is a turbulence driven model (i.e., driven primarily by the turbulence intensity) that divides the combustion process into four sequential phases: 1) kernel formation, 2) early flame growth, 3) fully developed turbulent flame propagation, and 4) end of combustion. The kernel formation process was not included in the previous version of this model, but was found to be required to predict engine speed effects.
Technical Paper

Emissions and Fuel Economy of a 1998 Toyota with a Direct Injection Spark Ignition Engine

1999-05-03
1999-01-1527
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested via a variety of driving cycles using California Phase 2 reformulated gasoline. A comparable PFI vehicle was also evaluated. The standard driving cycles examined were the Federal Test Procedure (FTP), Highway Fuel Economy Test, US06, simulated SC03, Japanese 10-15, New York City Cycle, and European ECE+EDU. Engine-out and tailpipe emissions of gas phase species were measured each second. Hydrocarbon speciations were performed for each phase of the FTP for both the engine-out and tailpipe emissions. Tailpipe particulate mass emissions were also measured. The results are analyzed to identify the emissions challenges facing the DISI engine and the factors that contribute to the particulates, NOx, and hydrocarbon emissions problems of the DISI engine.
Technical Paper

Engine Friction Reduction Through Liner Rotation

2005-04-11
2005-01-1652
Cylinder liner rotation (Rotating Liner Engine, RLE) is a new concept for reducing piston assembly friction in the internal combustion engine. The purpose of the RLE is to reduce or eliminate the occurrence of boundary and mixed lubrication friction in the piston assembly (specifically, the rings and skirt). This paper reports the results of experiments to quantify the potential of the RLE. A 2.3 L GM Quad 4 SI engine was converted to single cylinder operation and modified for cylinder liner rotation. To allow examination of the effects of liner rotational speed, the rotating liner is driven by an electric motor. A torque cell in the motor output shaft is used to measure the torque required to rotate the liner. The hot motoring method was used to compare the friction loss between the baseline engine and the rotating liner engine. Additionally, hot motoring tear-down tests were used to measure the contribution of each engine component to the total friction torque.
Technical Paper

Examination of the Factors that Influence the Durability of Railplugs

1994-03-01
940201
A new type of ignitor, the railplug, shows promise of extending the dilution limits for spark ignition engines. While much of the effort expended in our study of railplugs has focused upon demonstrating their effectiveness, it is recognized that railplug durability is presently not acceptable for production engine applications. The goal of the present study was to examine the factors that affect durability. The results of two types of investigations are reported. The effects of rail materials, pressure, delivered energy, and voltage at constant delivered energy on electrode erosion rates were studied for repeated firings in air at constant pressure. Railplug durability in a four-stroke SI engine was also evaluated, including examination of the effects of delivered energy, current pulse characteristics, and materials.
Technical Paper

Fractal Analysis of Turbulent Premixed Flame Images from SI Engines

1992-10-01
922242
Researchers in the field of turbulent combustion have found fractal geometry to be a useful tool for describing and quantifying the nature of turbulent flames. This paper describes and compares several techniques for the fractal analysis of two dimensional (2-D) turbulent flame images. Four methods of fractal analysis were evaluated: the Area Method, the Box Method, the Caliper Method, and the Area-Caliper Method. These techniques were first applied to a computer-generated fractal image having a known fractal dimension and known cut-offs. It was found that a “window” effect can cause the outer cut-off to be underestimated. The Caliper Method was found to suffer from noise arising from the statistical nature of the analysis. The Area-Caliper Method was found to be superior to the other methods. The techniques were applied to two types of flame images obtained in a spark ignition engine: Mie scattering from particles seeded in the flow and laser induced fluorescence of OH.
Technical Paper

Fuel Spray Dynamics and Fuel Vapor Concentration Near the Spark Plug in a Direct-Injected 4-Valve SI Engine

1999-03-01
1999-01-0497
The mixture preparation process was investigated in a direct-injected, 4-valve, SI engine under motored conditions. The engine had a transparent cylinder liner that allowed the fuel spray to be imaged using laser sheet Mie scattering. A fiber optic probe was used to measure the vapor phase fuel concentration history at the spark plug location between the two intake valves. The fuel injector was located on the cylinder axis. Two flow fields were examined; the stock configuration (tumble index 1.4) and a high tumble (tumble index 3.4) case created using shrouded intake valves. The fuel spray was visualized with the engine motored at 750 and 1500 RPM. Start of injection timings of 90°, 180° and 270° after TDC of intake were examined. The imaging showed that the fuel jet is greatly distorted for the high tumble condition, particularly at higher engine speeds. The tumble was large enough to cause significant cylinder wall wetting under the exhaust valves for some conditions.
Technical Paper

Fuel-Spray/Charge-Motion Interaction within the Cylinder of a Direct-Injected, 4-Valve, SI Engine

1998-02-23
980155
The mixture preparation process was investigated in a direct-injected, 4-valve, SI engine under motored conditions. The interaction between the high-pressure fuel jet and the intake air-flow was observed. Laser-sheet droplet imaging was used to visualize the in-cylinder droplet distributions, and a single-component LDV system was used to measure in-cylinder velocities. The fuel spray was visualized with the engine motored at 1500 and 750 rpm, and with the engine stopped. It was observed that the shape of the fuel spray was distorted by the in-cylinder air motion generated by the intake air flow, and that this effect became more pronounced with increasing engine speed. Velocity measurements were made at five locations on the symmetry plane of the cylinder, with the engine motored at 750 rpm. Comparison of these measurements with, and without, injection revealed that the in-cylinder charge motion was significantly altered by the injection event.
X