Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

-Design and Control of Switching Synchronous Motor Dedicated to Electric Cars - Motorization

2017-04-11
2017-01-9625
In this paper, we present a design and control methodology of an innovated structure of switching synchronous motor. This control strategy is based on the pulse width modulation technique imposing currents sum of a continuous value and a value having a shape varying in phase opposition with respect to the variation of the inductances. This control technology can greatly reduce vibration of the entire system due to the strong fluctuation of the torque developed by the engine, generally characterizing switching synchronous motors. A systemic design and modelling program is developed. This program is validated following the implementation and the simulation of the control model in the simulation environment Matlab-Simulink. Simulation results are with good scientific level and encourage subsequently the industrialization of the global system.
Technical Paper

15 Years of Transfer Path Analysis VINS in the Vehicle NVH Development - Selected Results

2014-06-30
2014-01-2047
Transfer path analysis is a powerful tool to support the vehicle NVH development. On the one hand it is a fast method to gain an overview of the complex interplay in the vehicle noise generation process. On the other hand it can be used to identify critical noise paths and vehicle components responsible for specific noise phenomena. FEV has developed several tools, which are adapted to the considered noise phenomena: Powertrain induced interior noise and vibration is analyzed by VINS (Vehicle Interior Noise Simulation), which allows the deduction of improvement measures fast enough for application in the accelerated vehicle development process. Further on vehicle/powertrain combinations not realized in hardware can be evaluated by virtual installation of the powertrain in the vehicle, which is especially interesting in the context of engine downsizing from four to three or six to four cylinders.
Technical Paper

19 Separation of Combustion Noise using Transient Noise Generation Model

2002-10-29
2002-32-1788
In a running engine, various impacts are excitation sources for structural vibrations and engine noises. Engine noises are classified, depending on their excitation sources, into the combustion noise, the combustion induced mechanical noise and the mechanical noise. It is difficult to measure such noises separately because some impacts occur closely in time and space. In this paper, a transient noise generation model of an engine was proposed considering vibration and its damping of engine structure. The present model was verified through the single explosion excitation experiment for a stationary engine. Using the noise generation model, the combustion noise was separated from the total noise radiating from a running four-stroke gasoline engine for motorcycles. It was found that the combustion noise had larger power at lower frequencies than higher frequencies. However, its contribution to the total engine noise was relatively small.
Technical Paper

1958 Chevrolet LEVEL AIR SUSPENSION

1958-01-01
580049
CHEVROLET has made its new air-suspension system easily interchangeable in production line assembly with standard full-coil suspension by adopting a 4-link-type rear suspension with short and long arms. A feature of the system is the mounting of the leveling valves within the air-spring assemblies. These valves correct riding height continually at a moderate rate, regardless of whether the springs are leveling or operating in ride motion. The system provides constant frequency ride—ride comfort remains the same whether the car is occupied by the driver alone or is fully loaded.
Technical Paper

1989 Suzuki Sidekick/Geo Tracker Body structure Analysis

1989-11-01
892536
This paper presents a summary of body structural analysis applied to the 1989 Suzuki Sidekick/Geo Tracker at various stages of development and design. The structure analysis techniques were applied previously to rigidity, vibration, strength, crashworthiness and optimization. The studies confirm that the CAE technique for body structure analysis is more beneficial if it is utilized in the earlier structure development stages particularly for vibration and crashworthiness. Through the extensive use of the structural analysis technique in conjunction with the experiment, the design concept of the Sidekick/Tracker body has been optimized to a most extent.
Technical Paper

2-Way Driven Compressor for Hybrid Vehicle Climate Control System

2004-03-08
2004-01-0906
The environment is one of the most important issues currently facing the world and the automobile industry is required to respond with eco-cars. To meet this requirement, the hybrid vehicle is one of the most optimal solutions. The hybrid system automatically stops engine idling (idling stop), or stops the engine during deceleration to recover energy. The engine stop however creates a problem concerning the vehicle's climate control system. Because the conventional climate control system incorporates a compressor driven by engine belt, there is almost no cooling performance while the engine is stopped. Until now, when a driver needed more cooling comfort the engine has been switched back on as a compromise measure. To realize cabin comfort that is consistent with fuel saving, a 2-way driven compressor has been developed that can be driven both by engine belt while the engine is running and by electric motor when the engine is stopped.
Technical Paper

20 A Combined Experimental and Numerical Approach for Motorcycle Crank Noise: Experimental Validation

2002-10-29
2002-32-1789
The demands for comfort and a cleaner environment have been increasing for the past years for motorcycle as well as car manufacturers. With the need to decrease the time-to-market, there is a clear drive to apply CAE-based methods in order to evaluate new designs and to propose design changes that solve any identified problems. More specifically, the demands on the comfort of the rider are not only related to ride & handling and vibration levels(1), but also to the noise levels generated by the motorcycle. This paper presents the virtual modeling of one-cylinder engine of a motorcycle that identifies the mechanism behind the generation of an annoying noise. Furthermore, different possible design changes were evaluated in order to solve the problem. A combined experimental and numerical approach was followed to achieve this. Experiments were used to identify important parameters that determine the engine behavior and thus are critical for the modeling of such an engine.
Technical Paper

3-D Loud-Speaker Systems for Automotive Use

1985-02-01
850162
In order to reproduce heavy bass with a small diameter loudspeaker for automotive use similar to the intensity and low distortion of a home-use Hi-Fi system, a large volume velocity must be obtained. This is done by lowering the minimum resonant frequency of system and by linearly expanding the amplitude range of diaphragm. We have developed a 3-D woofer system using a centering suspension that consists of four tubes of square cross-section continuously laid in the circumferential direction and a cone suspension that has V-shaped pleats in both of the circumferential and diameter directions for the vibration system. The results are good acoustic characteristics in an automotive cabin that are low in distortion with high output in the low frequency range up to 100Hz.
Technical Paper

3-D Scanning Vibrometry Enables Efficient Experimental Modal Analysis of Large and Complex Structures for NVH-Optimised Vehicles

2007-01-17
2007-26-034
In the design and development of modern cars with respect to comfort, silence and safety, state of the art experimental modal analysis is one of the essential development tools. Due to the large amount of degrees of freedom of such a large and complex system like a car with all its components, a complete simulation by FEM can not be realised easily and requires an enormous expenditure of work and calculations. In addition the simulations are based on assumed system parameters and thus the vibration behaviour of the resulting prototypes often is not completely identical to the simulated model. In contrast to conventional measurements with accelerometers, the 3-D Scanning Vibrometer enables fast and efficient non-contact measurements of the in-plane and out-of-plane vibration behaviour at all optical accessible surfaces. The method easily allows to increase the number of measured points to obtain a high measurement point density.
Technical Paper

3D Head Models for Protective Helmet Development

2003-06-17
2003-01-2176
In order to improve the fit and comfort of helmets, we developed digital head models that represent the anthropometric and morphometric variability found in the U.S. Navy. We analyzed the size and shape variation using two related approaches. First, we used Procrustes superimposition, which minimizes the distances between all landmarks of all subjects. This allowed us to visualize the variation in landmark distribution of the face and to test for statistical differences. Second, we extracted curvatures along the surface of the head. This allowed us to characterize the variation in the shape of the head. To create a series of sized digital models, we used principal component analysis (PCA) to organize the variation in both the traditional measurements as well as the locations of the 3D landmarks. Using an adaptation of multivariate accommodation modeling we identified representative individuals who characterize 95% of the variation in size and shape.
Technical Paper

3D Numerical Study of Sloshing Attenuation Using Vertical Slotted Barriers

2019-07-25
2019-01-5080
The present study deals with the reduction of fluid vibrations by dissipating the kinetic energy in a closed vibrating container partly filled using vertical slotted obstacles. The effect of the barriers on the liquid vibration inside a closed container exposed to a harmonic excitation is numerically studied. A single vertical slotted barrier (SVSB) and multivertical slotted barrier (MVSB) systems are considered for different liquid levels. The 3D liquid domain with the tank and the barrier as boundaries is modelled and solved numerically using ANSYS-CFX software. The reduction in pressures on the walls and the ceiling of the tank due to the influences of the slot size and numbers were evaluated to optimize the size and the numbers of the slots. The numerical approach shows an ability to simulate the nonlinear behavior of the liquid vibration when using vertical slotted barriers (VSB).
Technical Paper

3D Simulation Methodology to Predict Passenger Thermal Comfort Inside a Cabin

2021-09-15
2021-28-0132
The vehicle Heating, Ventilation and Air conditioning (HVAC) system is designed to meet both the safety and thermal comfort requirements of the passengers inside the cabin. The thermal comfort requirement, however, is highly subjective and is usually met objectively by carrying out time dependent mapping of parameters like the velocity and temperature at various in-cabin locations. These target parameters are simulated for the vehicle interior for a case of hot soaking and its subsequent cool-down to test the efficacy of the AC system. Typically, AC performance is judged by air temperature at passenger locations, thermal comfort estimation along with time to reach comfortable condition for human. Simulating long transient vehicle cabin for thermal comfort evaluation is computationally expensive and involves complex cabin material modelling.
Technical Paper

4-Wheel-Drive Tractors From John Deere “Concepts 1982”

1981-09-01
810913
Today's agri-businessman is challenged to improve his efficiency to meet higher operating costs and to counter the effects of inflation. New concepts in John Deere's line of 4-wheel-drive tractors are targeted toward this goal and provide increased productivity through power increases, improved fuel economy, comfortable convenient operator environment and controls, increased hydraulic power, improved serviceability and repairability and monitoring of more critical vehicle functions.
Technical Paper

42 V Electric Air Conditioning Systems (E-A/CS) for Low Emissions, Architecture, Comfort and Safety of Next Generation Vehicles

2001-08-20
2001-01-2500
Electrical Air Conditioning Systems for 42 V vehicles will provide many benefits in terms of Environment protection, car Architecture, cabin Comfort and overall Safety. E-A/C Systems essentially differ from conventional ones by the use of electrical compressors. First of all, they will be particularly well adapted to new powertrains, helping to make them more environmentally friendly. Accurate control and high efficiency under the most common thermal conditions will reduce the A/C impact on fuel consumption. Besides, higher sealing integrity will cut emissions of refrigerant during normal operation and maintenance. Secondly, the use of an electrically driven compressor (EDC) will suppress a belt, and will reduce the packaging constraints. This will help to design new vehicle architectures. Thirdly, the electrification of air conditioning will allow better thermal comfort. In particular, E-A/C Systems provide a good opportunity for cabin pre-conditioning.
Technical Paper

51 Examination on Measured Equivalent Sound Pressure Level and Sensory Evaluation for PWC Operating Sound

2002-10-29
2002-32-1820
When evaluating the sound generated by PWC (personal water craft), it is essential to study the measurement method for the PWC sound itself. However, it is equally important to identify the influence on the people in the neighbor of shoreline by being exposed to the sound from a group of PWC running around on waters. Such influence can be grasped in relation to the results of sensory evaluation. LAeq (equivalent continuous A-weighted sound level) was measured on PWC's running in various patterns and different numbers, while sensory evaluation was performed to obtain the data for the feelings the exposed persons would have about the sound. In this way the correlation between the sound pressure level and its perception by the people were analyzed. LAeq is the mixture of natural sound at the test site and the sound from the PWC(s) running in the predetermined patterns.
Technical Paper

520 Bobcat Designed for Improved Serviceability

1976-02-01
760404
A new compact skid steer loader has been developed. Along with productivity and cost, the design of this loader was concentrated on improving ease of operation, operator comfort and safety, and serviceability. This paper discusses how serviceability was improved over previous model Bobcats. That is; improved accessibility to regulary serviced items, reduced service parts and improved reliability.
Technical Paper

56 Development of two-cylinder liquid-cooled utility gasoline engine models with twin balancer shafts

2002-10-29
2002-32-1825
The new small and lightweight 2-cylinder liquid-cooled OHC gasoline engines were developed. These new engines are featuring high output, low vibration and noise radiation and so able to improve the comfortableness and amenity of applied utility machines. In this paper, the features of the new engines and the process to realize development targets are introduced. The basic structure adopted on the new engines is a liquid-cooled, inline 2-cyilinder layout with 360-degree firing intervals, twin balancer shafts, and an overhead camshaft that is driven by a cogged belt. Also various parts made of aluminum alloy and plastics could make the engine lighter. By these measures, the new engines could satisfy their hardest development targets, and realize their easy installation, higher versatility, and have the excellent features such as compact size, lightweight, high output, low exhaust gas emission and low vibration and noise radiation.
Technical Paper

6 Speed Automatic Transmission Vibration Magnitude Prediction and Whine Noise Improvement through Transmission System Modeling

2011-05-17
2011-01-1553
As automotive technology has been developed, gear whine has become a prominent contributor for cabin noise as the masking has been decreased. Whine is not the loudest source, but it is of high tonal noise which is often highly unpleasant. The gear noise originates at gear mesh. Transmission Error acts as an excitation source and these vibrations pass through gears, shafts and bearings to the housing which vibrates to produce noise on surrounding air. As microgeometry optimization target to reduce the fundamental excitation source of the noise, it has been favored method to tackle gear whine noise, especially for manual transmission. However, practicality of microgeometry optimization for the planetary gear system has been still in question, because of complex system structure and interaction among multi mesh gear sets make it hard to predict and even harder to improve. In this paper, successful case of whine noise improvement by microgeometry is presented.
Technical Paper

6 Speed Transverse Manual Gearbox for High Torque Application

2016-04-05
2016-01-1095
Weight reduction and high transmission efficiency demands are getting heavier to manual transmission (MT) for vehicle driving and fuel economy performance. Also comfortable shift feeling and low gear noise level are continuously required by customer because those sensitivity performances are directly recognized by driver which can determine the transmission's merchantability. Newly developed high torque capacity MT is based on serial transmission BG6 which is adopted into a lot of customer' vehicle. This new MT is weight reduced, shift feeling and gear noise performance are highly improved that keeps strong competitiveness in the future. Concerning shift feeling, its smoothness, force balance and cross shift performance are improved and optimized. Also for low gear noise performance, it was reduced to the level which can have advantage to competitor and highly comfortable for passenger vehicle. Those improvement technologies are reported as follows.
Technical Paper

64 Ergonomic Approaches to Improved Scooter Riding Comfort

2002-10-29
2002-32-1833
This paper gives a report on ergonomic approaches we tried to scooters for improvements in their riding comfort. First we conducted investigations into riding postures that offer a comfortable scooter ride. That is, we picked out major items for the evaluation of scooter riding postures and investigated a correlation between those items and their physical quantities. Our investigation revealed that room for leg and arm movements played a major role in a scooter riding posture. We further found out a high correlation between the evaluation items for legroom and the knee angles and also high correlation between the evaluation items for legroom and the ankle angle. Next we report on the result of the attempt we made at improved riding comfort by equipping the scooter seat with a backrest. To check the effects of backrest, we measured the seating pressure distribution, myogenic potential, and cardiogenic potential.
X