Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Customer Oriented Vehicle Dynamics Assessment for Autonomous Driving in Highway

2019-04-02
2019-01-1020
Autonomous Driving is one of the main subjects of academic research and one important trend in the automotive industry. With the advent of self-driving vehicles, the interest around trajectory planning raises, in particular when a customer-oriented analysis is performed, since more and more the carmakers will have to pay attention to the handling comfort. With that in mind, an experimental approach is proposed to assess the main characteristics of human driving and gain knowledge to enhance quality of autonomous vehicles. Focusing on overtaking maneuvers in a highway environment, four comfort indicators are proposed aiming to capture the key aspects of the chosen paths of a heterogeneous cohort. The analysis of the distribution of these indicators (peak to peak lateral acceleration, RMS lateral acceleration, Smoothness and Jerk) allowed the definition of a human drive profile.
Technical Paper

Human-Driving Highway Overtake and Its Perceived Comfort: Correlational Study Using Data Fusion

2020-04-14
2020-01-1036
As an era of autonomous driving approaches, it is necessary to translate handling comfort - currently a responsibility of human drivers - to a vehicle imbedded algorithm. Therefore, it is imperative to understand the relationship between perceived driving comfort and human driving behaviour. This paper develops a methodology able to generate the information necessary to study how this relationship is expressed in highway overtakes. To achieve this goal, the approach revolved around the implementation of sensor Data Fusion, by processing data from CAN, camera and LIDAR from experimental tests. A myriad of variables was available, requiring individuating the key-information and parameters for recognition, classification and understanding of the manoeuvres. The paper presents the methodology and the role each sensor plays, by expanding on three main steps: Data segregation and parameter selection; Manoeuvre detection and processing; Manoeuvre classification and database generation.
X