Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Hardware-in-the-Loop and Road Testing of RLVW and GLOSA Connected Vehicle Applications

2020-04-14
2020-01-1379
This paper presents an evaluation of two different Vehicle to Infrastructure (V2I) applications, namely Red Light Violation Warning (RLVW) and Green Light Optimized Speed Advisory (GLOSA). The evaluation method is to first develop and use Hardware-in-the-Loop (HIL) simulator testing, followed by extension of the HIL testing to road testing using an experimental connected vehicle. The HIL simulator used in the testing is a state-of-the-art simulator that consists of the same hardware like the road side unit and traffic cabinet as is used in real intersections and allows testing of numerous different traffic and intersection geometry and timing scenarios realistically. First, the RLVW V2I algorithm is tested in the HIL simulator and then implemented in an On-Board-Unit (OBU) in our experimental vehicle and tested at real world intersections.
Technical Paper

Localization and Perception for Control and Decision Making of a Low Speed Autonomous Shuttle in a Campus Pilot Deployment

2018-04-03
2018-01-1182
Future SAE Level 4 and Level 5 autonomous vehicles will require novel applications of localization, perception, control and artificial intelligence technology in order to offer innovative and disruptive solutions to current mobility problems. This paper concentrates on low speed autonomous shuttles that are transitioning from being tested in limited traffic, dedicated routes to being deployed as SAE Level 4 automated driving vehicles in urban environments like college campuses and outdoor shopping centers within smart cities. The Ohio State University has designated a small segment in an underserved area of campus as an initial autonomous vehicle (AV) pilot test route for the deployment of low speed autonomous shuttles. This paper presents initial results of ongoing work on developing solutions to the localization and perception challenges of this planned pilot deployment.
Technical Paper

Mobile Safety Application for Pedestrians Utilizing P2V Communication over Bluetooth

2022-03-29
2022-01-0155
Vulnerable Road User (VRU) safety has been an important issue throughout the years as corresponding fatality numbers in traffic have been increasing each year. With the developments in connected vehicle technology, there are new and easier ways of implementing Vehicle to Everything (V2X) communication which can be utilized to provide safety and early warning benefits for VRUs. Mobile phones are one important point of interest with their sensors being increased in quantity and quality and improved in terms of accuracy. Bluetooth and extended Bluetooth technology in mobile phones has enhanced support to carry larger chunks of information to longer distances. The work we discuss in this paper is related to a mobile application that utilizes the mobile phone sensors and Bluetooth communication to implement Personal Safety Message (PSM) broadcast using the SAE J2735 standard to create a Pedestrian to Vehicle (P2V) based safety warning structure.
Technical Paper

Performance Evaluation of the Pass-at-Green (PaG) Connected Vehicle V2I Application

2020-04-14
2020-01-1380
In recent years, the trend in the automotive industry has been favoring the reduction of fuel consumption in vehicles with the help of new and emerging technologies, such as Vehicle to Infrastructure (V2I), Vehicle to Vehicle (V2V) and Vehicle to Everything (V2X) communication and automated driving capability. As the world of transportation gets more and more connected through these technologies, the need to implement algorithms with V2I capability is amplified. In this paper, an algorithm called Pass at Green, utilizing V2I and vehicle longitudinal automation to modify the speed profile of a mid-size generic vehicle to decrease fuel consumption has been studied. Pass at Green (PaG) uses Signal Phase and Timing (SPaT) information acquired from upcoming traffic lights, which are the current phase of the upcoming traffic light and remaining time that the phase stays active.
Technical Paper

Use of Hardware in the Loop (HIL) Simulation for Developing Connected Autonomous Vehicle (CAV) Applications

2019-04-02
2019-01-1063
Many smart cities and car manufacturers have been investing in Vehicle to Infrastructure (V2I) applications by integrating the Dedicated Short-Range Communication (DSRC) technology to improve the fuel economy, safety, and ride comfort for the end users. For example, Columbus, OH, USA is placing DSRC Road Side Units (RSU) to the traffic lights which will publish traffic light Signal Phase and Timing (SPaT) information. With DSRC On Board Unit (OBU) equipped vehicles, people will start benefiting from this technology. In this paper, to accelerate the V2I application development for Connected and Autonomous Vehicles (CAV), a Hardware in the Loop (HIL) simulator with DSRC RSU and OBU is presented. The developed HIL simulator environment is employed to implement, develop and evaluate V2I connected vehicle applications in a fast, safe and cost-effective manner.
Technical Paper

Virtual and Real Data Populated Intersection Visualization and Testing Tool for V2X Application Development

2021-04-06
2021-01-0164
Connected Vehicle (CV) technologies have been progressing rapidly in the US. The capability afforded by Vehicle-to-Vehicle (V2V) communication improves situational awareness and provides advantages for many of the traffic problems caused by reduced visibility or No-Line-of-Sight situations, being useful for both autonomous and non-autonomous driving. Additionally, with the traffic light Signal Phase and Timing (SPaT) and Map Data (MAP) information and other advisory information provided with Vehicle-to-Infrastructure (V2I) communication, outcomes which benefit the driver in the long run, such as reducing fuel consumption with speed regulation or decreasing traffic congestion through optimal speed advisories, providing red light violation warning messages and intersection motion assist messages for collision-free intersection maneuvering are all made possible.
X