Refine Your Search

Topic

Search Results

Standard

Anti-Noise Brake Pads Shims: T-pull Test

2009-09-30
CURRENT
J2694_200909
This recommended practice covers the attachment of bonded anti-noise brake pad shims only. Mechanically attached shims (those without bonding) are not covered by this procedure.
Standard

BRAKE LINING QUALITY TEST PROCEDURE

1997-02-01
HISTORICAL
J661_199702
The purpose of this SAE Recommended Practice is to establish a uniform laboratory procedure for securing and reporting the friction and wear characteristics of brake linings. The performance data obtained can be used for in-plant quality control by brake lining manufacturers and for the quality assessment of incoming shipments by the purchasers of brake linings.
Standard

Brake Lining Quality Test Procedure

2021-10-26
CURRENT
J661_202110
The purpose of this SAE Recommended Practice is to establish a uniform laboratory procedure for securing and reporting the friction and wear characteristics of brake linings. The performance data obtained can be used for in-plant quality control by brake lining manufacturers and for the quality assessment of incoming shipments by the purchasers of brake linings.
Standard

Brake Lining Quality Test Procedure

2012-11-01
HISTORICAL
J661_201211
The purpose of this SAE Recommended Practice is to establish a uniform laboratory procedure for securing and reporting the friction and wear characteristics of brake linings. The performance data obtained can be used for in-plant quality control by brake lining manufacturers and for the quality assessment of incoming shipments by the purchasers of brake linings.
Standard

DETERMINING THE SPECIFIC GRAVITY OF BRAKE LININGS

1969-02-01
HISTORICAL
J380_196902
Specific gravity is a nondestructive test used as a quality control check of the consistency of formulation and processing of brake lining. Specific gravity alone shows nothing about a lining’s ability to develop friction or to resist fade when used as a friction element in brakes. Specific gravity varies with the formulation of the lining. The specific gravity of sintered metal powder linings, particularly those which have steel backing members, is usually determined somewhat differently. Reference ASTM B 376 “Density of Sintered Metal Friction Material” (latest revision).1 The specific gravity and the range of specific gravity are peculiar to each formulation and, therefore, the acceptable values or range must be established for each formulation by the manufacturer.
Standard

GOGAN HARDNESS OF BRAKE LINING

1969-01-01
HISTORICAL
J379_196901
Gogan hardness, a nondestructive (a penetrator causes shallow surface deformation) method of measuring compressibility, is used as a quality control check of the consistency of formulation and processing of brake lining. Gogan hardness alone shows nothing about a lining’s ability to develop friction or to resist fade when used as a friction element in brakes. Gogan hardness varies with formulation, contour, and thickness of the lining. The hardness of sintered powder metal lining is usually determined with Rockwell Superficial hardness equipment. Reference ASTM B 3471 (latest revision) “Standard Method of Test for Hardness of Sintered Metal Friction Materials.” The Gogan hardness and the range of Gogan hardness are peculiar to each formulation, thickness, and contour and, therefore, the acceptable values or range must be established for each formulation and part configuration by the manufacturer.
Standard

GOGAN HARDNESS OF BRAKE LINING

1996-03-01
HISTORICAL
J379_199603
Gogan hardness, a nondestructive (a penetrator causes shallow surface deformation) method of measuring compressibility, is used as a quality control check of the consistency of formulation and processing of brake lining. Gogan hardness alone shows nothing about a lining's ability to develop friction or to resist fade when used as a friction element in brakes. Gogan hardness varies with formulation, contour, and thickness of the lining. The Gogan hardness and the range of Gogan hardness are peculiar to each formulation, thickness, and contour and, therefore, the acceptable values or range must be established for each formulation and part configuration by the manufacturer.
Standard

GOGAN HARDNESS OF BRAKE LINING

1972-05-01
HISTORICAL
J379A_197205
Gogan hardness, a nondestructive (a penetrator causes shallow surface deformation) method of measuring compressibility, is used as a quality control check of the consistency of formulation and processing of brake lining. Gogan hardness alone shows nothing about a lining’s ability to develop friction or to resist fade when used as a friction element in brakes. Gogan hardness varies with formulation, contour, and thickness of the lining. The Gogan hardness and the range of Gogan hardness are peculiar to each formulation, thickness, and contour and, therefore, the acceptable values or range must be established for each formulation and part configuration by the manufacturer.
Standard

Gogan Hardness of Brake Lining

2004-08-16
HISTORICAL
J379_200408
Hardness measurements are used as a quality control check of the consistency of formulation and processing of brake linings. Gogan hardness is nondestructive (the penetrator causes shallow surface deformation.). Gogan hardness method alone does not show anything about a lining’s ability to develop friction or to resist fade when used as a friction element in brakes. The hardness and the range of hardness are peculiar to each formulation, thickness, and contour; therefore, the acceptable values and ranges must be established for each formulation and part configuration by the manufacturer.
Standard

Hardness of Brake Lining

2015-08-27
CURRENT
J2654_201508
Hardness measurements are used as a quality control check of the consistency of formulation and processing of brake linings. This hardness method is nondestructive. NOTE—This method is not a measure of friction level. The hardness and the range of hardness are characteristic of each formulation; therefore, the acceptable values and ranges must be established for each formulation and may be affected by processing. NOTE—The hardness of sintered powder metal lining is usually determined with Rockwell superficial hardness equipment. (See ASTM B 347)
Standard

Measurement of Disc Brake Friction Material Underlayer Distribution

2016-05-24
CURRENT
J2724_201605
This procedure describes a method for measuring the fraction of underlayer (also referred to as backing layer) existing at any given height above the a disc brake friction materials shoe plate. Measuring underlayer distribution is useful for computing useable lining thickness and for friction material quality management.
Standard

Measurement of Disc Brake Friction Material Underlayer Distribution

2012-04-19
HISTORICAL
J2724_201204
This procedure describes a method for measuring the fraction of underlayer (also referred to as backing layer) existing at any given height above the a disc brake friction materials shoe plate. Measuring underlayer distribution is useful for computing useable lining thickness and for friction material quality management.
Standard

Road Vehicles—Brake Linings—Compressibility Test Procedure

2006-12-18
HISTORICAL
J2468_200612
This SAE Standard specifies a method for testing and measuring the compressibility of friction materials and disc brake pad assemblies to be used in road vehicles. This SAE test method is consistent in intent with ISO 6310.
Standard

SPECIFIC GRAVITY OF BRAKE LINING

1993-02-01
HISTORICAL
J380_199302
Specific gravity is a nondestructive test used as a quality control check of the consistency of formulation and processing of brake lining. Specific gravity alone shows nothing about a lining's ability to develop friction or to resist fade when used as a friction element in brakes. Specific gravity varies with the formulation of the lining. The specific gravity of sintered metal powder linings, particularly those which have steel backing members, is usually determined somewhat differently. Reference ASTM B 376. The specific gravity and the range of specific gravity are peculiar to each formulation and, therefore, the acceptable values or range must be established for each formulation by the manufacturer.
Standard

SPECIFIC GRAVITY OF BRAKE LINING

1971-08-01
HISTORICAL
J380_197108
Specific gravity is a nondestructive test used as a quality control check of the consistency of formulation and processing of brake lining. Specific gravity alone shows nothing about a lining’s ability to develop friction or to resist fade when used as a friction element in brakes. Specific gravity varies with the formulation of the lining. The specific gravity of sintered metal powder linings, particularly those which have steel backing members, is usually determined somewhat differently. Reference ASTM B 376, ‘Density of Sintered Metal Friction Material’ (latest revision).1 The specific gravity and the range of specific gravity are peculiar to each formulation and, therefore, the acceptable values or range must be established for each formulation by the manufacturer.
X