Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

100 HP / 200 Nm Diesel Motorcycle with 6 Speed Automated Manual Transmission

2004-09-27
2004-32-0069
Diesel engines, especially CR (Common Rail) DI (Direct Injection) TCI (Turbo Charged Inter-cooled), share a wide acceptance in the passenger car market due to the enormous torque and flexibility at low engine speed. A pre - condition for the use of a diesel engine in a motorcycle is that the disadvantages like combustion noise and visible smoke are reduced or eliminated. Moreover the fuel economy and performance characteristics of a diesel engine are dedicated to be used in a touring or large displacement motorcycle. The AVL engine concept is the first high performance diesel engine to be specially designed for motorcycles in terms of packaging and styling. To compensate for the limited engine speed range a gearbox with a wide ratio spread is required. This leads to a manual transmission with at least 6 gears or an automatic transmission. For the AVL concept an AMT (Automated Manual Transmission) was selected.
Technical Paper

120VAC Power Inverters

1983-02-01
830131
Inverters are solid state devices which change DC to 120VAC electricity. They are sufficiently rugged and reliable to make them practical for use on utility vehicles for operating thumpers, tools, lights and induction motor loads. The SCR type rather than the transistor type inverter is generally required for inductive and reactive loads. Static inverters operate from battery input. They provide power without running an engine, but are limited by battery capacity so work best in intermittent load applications. Dynamic inverters operate from alternator input and will handle continuous loads to 7200 watts with truck engine running.
Technical Paper

1996 GM 7.4 Liter Engine Upgrade

1996-02-01
960012
General Motors Powertrain Division has developed the next generation big block V8 engine for introduction in the 1996 model year. In addition to meeting tighter emission and on-board diagnostic legislation, this engine evolved to meet both customer requirements and competitive challenges. Starting with the proven dependability of the time tested big block V8, goals were set to substantially increase the power, torque, fuel economy and overall pleaseability of GM's large load capacity gasoline engine. The need for this new engine to meet packaging requirements in many vehicle platforms, both truck and OEM, as well as a requirement for minimal additional heat rejection over the engine being replaced, placed additional constraints on the design.
Technical Paper

1997 GM 5.7 LITER LS1 V8 ENGINE

1997-02-24
970915
General Motors Powertrain Group (GMPTG) has developed an all new small block V8 engine, designated LS1, for introduction into the 1997 Corvette. This engine was designed to meet both customer requirements and competitive challenges while also meeting the ever increasing legislated requirements of emissions and fuel economy. This 5.7L V8 provides increased power and torque while delivering higher fuel economy. In addition, improvements in both QRD and NVH characteristics were made while meeting packaging constraints and achieving significant mass reductions.
Technical Paper

2.5 D LED: A Cost Efficient Solution for 3 D Signaling Lamps

2007-04-16
2007-01-1231
After the first appearance of LED rear lamps, which employed mainly two-dimensional arrays of LEDs, the request of stylists and OEMs to have three-dimensional LED alignment has increased strongly. Development of more powerful LEDs and new packaging and assembly technologies now allows for a three-dimensional assembly of the LEDs, giving an impression of depth and enabling the LEDs to follow even extreme curvatures. This gives great customer satisfaction in terms of styling, but the disadvantage is that the cost for the three-dimensional LED alignment increases significantly. To counteract this development, we have developed a light guide technology approach (so-called 2.5 D) to combine a cost efficient LED assembly process with the flexibility of a 3 D arrangement of the light sources. Thus, we can use standard planar FR4 (Flame Resistant 4) LED printed circuit boards with arbitrary LEDs and do not depend on a certain assembly technology.
Technical Paper

24SIAT-0900: Heavy Duty Vehicle Aftertreatment Technologies for the Future: What May Be Required at BSVII?

2024-01-16
2024-26-0149
This paper describes the after-treatment technology that could be used to meet a future BS-VII standard, considering close-coupled SCR (cc-SCR) to help start NOx conversion earlier. Both active (Cu/Fe-SCR based) and passive (V-SCR based) systems have the potential to meet emission limits. V-SCR may be considered in the rear position because V-SCR shows a fast response with very low N2O formation. Next-gen V-SCR technology shows significantly improved performance and durability closer to Cu-SCR. The steady-state NOx conversions over Next-Gen V-SCR were better than BS-VI V-SCR in both fresh and aged-580°C/100h conditions. High durability was also observed after engine aging of 1000h (WHTC + high load). Another big challenge in BS VII could be the PN10 requirement. With enhanced filtration coating (EFC) technology, PN emissions drop drastically in comparison to Euro VI reference without EFC to meet a future BS VII.
Technical Paper

2D/3D Painted TPO Fascia Testing to Mimic Real World Friction Induced Damage by Cohesive and Delamination Failures

1998-02-23
980712
Durability tests have been initiated on olefinic and production painted fascias. Both 2D and 3D tests have provided insights into Friction Induced Damage (FID) failure mechanics. Full scale, 3D tests of automotive fascia mimic the parking lot rubbing contact between cars with friction forces exceeding 5000. N. 2D tests provide the cost effective approach to materials research by isolating the failure mechanics in the upper 250 μm of the decorated TPO where the cosmetic damage is initiated. Initial findings show some olefinic paint, TPO combinations to be more damage resistant for realistic frictional contact scenarios.
Technical Paper

2K Clearcoat for Automotive Plastics

1997-02-24
970990
2k clearcoat is the progressive step that is keeping coatings for elastomeric fascia in pace with the current automobile design, performance, and durability demands. Initially, rigid 2k coatings were applied over plastic for low temperature cure. Over metal, 2k rigid clearcoat produced a dramatic improvement in appearance and durability. Flexibility is the key attribute that a 2k clearcoat engineered for use over fascias must posses. Utilizing the same basecoat and primer, 2k flexible clearcoats are being successfully applied to flexible fascia, generating excellent appearance and outstanding durability.
Technical Paper

42 V Electric Air Conditioning Systems (E-A/CS) for Low Emissions, Architecture, Comfort and Safety of Next Generation Vehicles

2001-08-20
2001-01-2500
Electrical Air Conditioning Systems for 42 V vehicles will provide many benefits in terms of Environment protection, car Architecture, cabin Comfort and overall Safety. E-A/C Systems essentially differ from conventional ones by the use of electrical compressors. First of all, they will be particularly well adapted to new powertrains, helping to make them more environmentally friendly. Accurate control and high efficiency under the most common thermal conditions will reduce the A/C impact on fuel consumption. Besides, higher sealing integrity will cut emissions of refrigerant during normal operation and maintenance. Secondly, the use of an electrically driven compressor (EDC) will suppress a belt, and will reduce the packaging constraints. This will help to design new vehicle architectures. Thirdly, the electrification of air conditioning will allow better thermal comfort. In particular, E-A/C Systems provide a good opportunity for cabin pre-conditioning.
Technical Paper

52 Development of a Four-stroke Engine with Turbo Charger for Personal Watercraft

2002-10-29
2002-32-1821
There is a movement to apply emission control in a marine engine as well due to high public awareness of environmental concern in the United States. We started at the development of 3-seater Personal Watercraft (PWC) equipped with 4-stroke engines in taking environment conformity and potential into account. The PWC employed series 4-cylinder 1100cc displacement engine that has been used for mass production motorcycles. The engine was modified to satisfy requirements for PWC, as a marine engine, such as performance function and corrosion. In order to achieve greater or equal power/weight ratio as against two-stroke PWCs, a four-stroke engine for PWC with an exhaust turbo charger was developed. As a result, we succeeded in developing an engine that attained top-level running performance and durability superior to competitors' 2-stroke engines.
Technical Paper

A 360×226 Pixel CMOS Imager Chip Optimized for Automotive Vision Applications

2001-03-05
2001-01-0317
Multiple automotive systems are now being developed which require an imager or vision chip to provide information regarding vehicle surroundings, vehicle performance, and vehicle passenger compartment status. Applications include lane departure, lane tracking, collision avoidance, as well as occupant position, impaired driver, and occupant identification. These applications share many requirements, including robust design, tolerance for the automotive environment, built in self-test, wide dynamic range, and low cost. In addition, each application has unique requirements for resolution, sensitivity, imager aspect ratio, and output format. In many cases, output will go directly to vehicle systems for processing, without ever being displayed to the driver. Commercial imager chips do not address this wide spectrum of requirements. A CMOS imager chip has been designed to address these unique automotive requirements.
Technical Paper

A CAR MANUFACTURER'S EXPERIENCES WITH BALLOON TIRES1

1925-01-01
250020
In the summer of 1922 the Buick Company began experimenting with balloon tires. The first tires tested, being four-ply and 32 x 6.20 in. in size, produced a galloping action that was sufficient to prejudice the company's engineers against them, and the tests were discontinued. In addition to the galloping effect, other difficulties encountered included those usually present in steering, the development of wheel shimmying to a serious degree, the lack of proper clearance for external brakes because of the small 20-in. wheels, the excessively rapid wear of the tire tread, and the greater susceptibility to puncture. Leaks because of the pinching of the inner tubes also occurred. When, later, a set of 5.25-in. tires was tried on a smaller car, the galloping was noticeably less; but punctures were more numerous than was the case with high-pressure tires.
Technical Paper

A CNG Specific Fuel Injector Using Latching Solenoid Technology

1995-08-01
951914
An advanced fuel injector designed specifically for low energy density gaseous fuels has been developed which demonstrates compelling performance advantages over fuel injectors utilizing conventional solenoid technology. The injector incorporates design features that are necessary to optimize the performance for fuels such as CNG, LNG, and propane. This paper provides a background of magnetic latching technology and addresses the application of the technology to an advanced, pressure balanced, gaseous fuel injector. Performance of the injector will be discussed in detail as will features of the injector specifically adapted for gaseous applications. The ability of the injector to solve fuel metering problems facing the industry, such as turn down ratio limitations, accuracy, durability, and compatibility with existing engine electronics, are addressed.
Technical Paper

A Capacity Oriented Quality Assurance Method by Using Modular Containerized Test Cells

2002-11-19
2002-01-3456
The requirements for diesel and gasoline engines are continuously increasing with respect to emissions, fuel consumption and durability. Besides the engine development process the quality of the production engine itself has to be ensured. This paper discusses alternative philosophies and approaches in terms of the quality management process. Based on a detailed analysis of the required equipment advanced solutions are presented. Modular containerized test cells are described being equipped exactly to the current testing task ready to use in low infrastructure. The testing capacity of the facility can be adjusted to the actual production volume by simply removing or adding modular test cells. Thus, at every facility the testing tasks can be executed successfully and the investment can be kept low.
Technical Paper

A Case Study in Structural Optimization of an Automotive Body-In-White Design

2008-04-14
2008-01-0880
A process for simultaneously optimizing the mechanical performance and minimizing the weight of an automotive body-in-white will be developed herein. The process begins with appropriate load path definition though calculation of an optimized topology. Load paths are then converted to sheet metal, and initial critical cross sections are sized and shaped based on packaging, engineering judgment, and stress and stiffness approximations. As a general direction of design, section requirements are based on an overall vehicle “design for stiffness first” philosophy. Design for impact and durability requirements, which generally call for strength rather than stiffness, are then addressed by judicious application of the most recently developed automotive grade advanced high strength steels. Sheet metal gages, including tailored blanks design, are selected via experience and topometry optimization studies.
Technical Paper

A Combined 3D/Lumped Modeling Approach to Ammonia SCR After-treatment Systems: Application to Mixer Designs

2006-04-03
2006-01-0469
In practical applications of ammonia SCR aftertreatment systems using urea as the reductant storage compound, one major difficulty is the often constrained packaging envelope. As a consequence, complete mixing of the urea solution into the exhaust gas stream as well as uniform flow and reductant distribution profiles across the catalyst inlet face are difficult to achieve. This paper discusses a modeling approach, where a combination of 3D CFD and a lumped parameter SCR model enables the prediction of system performance, even with non-uniform exhaust flow and ammonia distribution profiles. From the urea injection nozzle to SCR catalyst exit, each step in the modeling process is described and validated individually. Finally the modeling approach was applied to a design study where the performance of a range of urea-exhaust gas mixing sections was evaluated.
Technical Paper

A Compact and Robust Corona Discharge Device (CDD™) for Generating Non-Thermal Plasma in Automotive Exhaust

2000-06-19
2000-01-1845
We describe the details of a particular compact and robust Corona Discharge Device (CDD™) that generates non-thermal plasma in the harsh environment of a stoichiometric exhaust. This particular CDD™ can generate plasma power of up to 15W at exhaust gas temperatures to 850C. Optimizations of geometry, material selection, and thermal design were performed by a combination of simulation and experiment. This particular design considered tradeoffs of several factors, including plasma power, EMI shielding, thermal durability, high voltage interconnection, packaging size, and exhaust emissions reduction. This particular CDD™ was designed to meet most of the same durability and survivability specifications as an O2 sensor, since both are exposed to similar exhaust environments.
Technical Paper

A Comparative Evaluation of Mechanical Properties and Machinability of Austempered Ductile Iron (ADI) and Microalloyed Steel

1991-02-01
910141
Austempered Ductile Iron (ADI) samples were heat treated to produce materials with tensile strengths in the range of 100 ksi to 170 ksi. Microalloyed steels were also produced with equivalent tensile and yield strength levels. These steels were evaluated for mechanical properties in terms of tensile and yield strength, ductility, impact toughness, fracture toughness and fatigue strength. Machinability was extensively evaluated through tests of drilling, turning and plunge machining. This paper reports on this comprehensive comparative evaluation of these two important classes of materials for use in the automotive industry.
X