Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Cross-Section Design of the Crash Box to Maximize Energy Absorption

2011-10-06
2011-28-0110
Vehicle collisions frequently happen at a low-speed. Insurance companies and the RCAR (Research Council for Automobile Repairs) require reducing repair costs and improving occupant safety in a low-speed crash. In order to reduce repair costs in the RCAR test conditions, an energy absorbing device such as the crash box (C/Box) is usually installed. The C/Box is a thin-walled structure attached between the vehicle bumper structure and the side rail. The determination of the C/Box geometry is quite important to absorb the impact energy since the installation space of the C/Box is not very large. In this research, the determination process for the cross-sectional dimensions is proposed to improve the energy absorption efficiency of the C/Box. The proposed process has two steps. First, the cross-sectional dimensions are determined by two ways. One is a parameter study using an orthogonal array and the other is topology optimization.
Journal Article

Design Information Management of an On-Line Electric Vehicle Using Axiomatic Design

2010-04-12
2010-01-0279
Axiomatic design is utilized to identify the design characteristics of an On-Line Electric Vehicle and to manage the design information. The On-Line Electric Vehicle, which is being developed at the Korea Advanced Institute of Science and Technology, is a different concept of an electric vehicle from conventional electric vehicles which use the electric power of a charged battery(s). It is operated by an electric power supplied by the contactless power transmission technique between the roadway side and the vehicle. In other words, the power is transmitted based on the principle of an electric transformer. The On-Line Electric Vehicle can overcome the limitations of conventional electric vehicles such as the weight of the battery and driving distance problems. Because designers have little experience and knowledge about the On-Line Electric Vehicle in the developmental stage, an appropriate design guide is needed. The axiomatic approach is employed for the design process.
Journal Article

Managing System Design Process Using Axiomatic Design: A Case on KAIST Mobile Harbor Project

2010-04-12
2010-01-0278
As world-wide container volume increases and very large container ships emerge as a dominant player in the maritime cargo transport market, functional capabilities of container ports need to be greatly enhanced. To address this problem, KAIST is undertaking a project to design a novel container transport system, namely Mobile Harbor. Mobile Harbor refers to a system that can go out to a large container ship anchoring in the open sea, load and unload containers between the container ship and the Mobile Harbor, and transport them to their destinations. Designing Mobile Harbor presents a number of challenges as with many other large-scale engineering projects, especially at the beginning stage of the project.
X