Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Blast Protection Design of a Military Vehicle System Using a Magic Cube Approach

2008-04-14
2008-01-0773
A Magic Cube (MQ) approach for crashworthiness design has been proposed in previous research [1]. The purpose of this paper is to extend the MQ approach to the blast protection design of a military vehicle system. By applying the Space Decompositions and Target Cascading processes of the MQ approach, three subsystem design problems are identified to systematize the blast protection design problem of a military vehicle. These three subsystems, including seat structure, restraint system, and under-body armor structure, are most influential to the overall blast-protective design target. The effects of a driver seat subsystem design and restraint-system subsystem design on system blast protection are investigated, along with a focused study on the under-body blast-protective structure design problem.
Technical Paper

First Order Analysis for Automotive Body Structure Design - Part 4: Noise and Vibration Analysis Applied to a Subframe

2004-03-08
2004-01-1661
First Order Analysis (FOA) is useful for designing subunits in the mid-frequency range, as the layout and mounting positions can easily be decided at the conceptual design phase. In order to reduce vibration, we propose FOA for Noise and Vibration (NV) with the following characteristics. First, a dynamic beam element is formulated analytically using Euler's beam theory [1], so that a long uniform beam can express one element with high-order vibration. Second, power flow between potential energy and kinetic energy can be expressed as post-processing, so we can examine how to change or cut off the vibration energy path. In this paper, the above analysis is applied to a front subframe for the conceptual design of an automotive body structure.
Technical Paper

First Order Analysis for Automotive Body Structure Design-Part 2: Joint Analysis Considering Nonlinear Behavior

2004-03-08
2004-01-1659
We have developed new CAE tools in the concept design process based on First Order Analysis (FOA). Joints are often modeled by rotational spring elements. However, it is very difficult to obtain good accuracy. We think that one of the reasons is the influence of the nonlinear behavior due to local elastic buckling. Automotive body structures have the possibility of causing local buckling since they are constructed by thin walled cross sections. In this paper we focus on this behavior. First of all, we present the concept of joint analysis in FOA, using global-local analysis. After that, we research nonlinear behavior in order to construct an accurate joint reduced model. (1) The influence of local buckling is shown using uniform beams. (2) Stiffness decrease of joints due to a local buckling is shown. (3) The way of treating joint modeling considering nonlinear behavior is proposed.
Technical Paper

Fundamental Studies on Crashworthiness Design with Uncertainties in the System

2005-04-11
2005-01-0613
Previous research [1] using an advanced multi-domain topology optimization technique has shown a great promise for the crashworthiness design using the new technique. In this paper, we try to answer some fundamental questions regarding the crashworthiness design, which include: 1) what are the fundamental crash mechanisms of a general crash process; 2) how the uncertainties in the system will affect the crash behavior of a structure; and 3) what is the proper approach for the crashworthiness design optimization that will have needed effectiveness and efficiency. In this paper, three different kinds of uncertainties, uncertainties in the structural parameters, the modeling processes, and the loading and boundary conditions, will be considered to assess the effects of the uncertainties in the crash process. The possible crash mechanisms are then studied to provide an understanding for the design problem.
Technical Paper

Model Analysis of a Diesel Engine Cylinder Block using HEXA8 Finite Elements - Analysis and Experiment

1988-10-01
881853
Analytical and experimental investigations of a diesel engine cylinder block are performed. An attempt is made to reduce modeling and analysis costs in the design process of an engine. Traditionally, the engine has been modeled using either 8-node or 20-node solid elements for stress and thermal analyses and modeled using 4-node plate and shell elements for the dynamic analysis. In this paper, a simpler finite element modeling technique using only 8 node solid elements for both dynamic and static analyses is presented. Based on this integrated modeling technique of finite elements, eigenvalues are calculated and compared with the experimental data obtained from modal testing of an actual engine cylinder block.
Technical Paper

Multi-Domain Multi-Step Topology Optimization for Vehicle Structure Crashworthiness Design

2004-03-08
2004-01-1173
A multi-domain and multi-step topology optimization approach has been developed to address a wide range of structural design problems with manufacturability and other application concerns. The potential applications have been demonstrated in our previous work [1,2]. In this paper, we try to extend this method for vehicle crash design problem. The design process will be explained and examples will be provided to illustrate the potential application of this method for complicated crash design problems.
X