Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A Comparative Review of Fuel Cell Vehicles (FCVs) and Hybrid Electric Vehicles (HEVs) Part I: Performance and Parameter Characteristics, Emissions, Well-to-Wheels Efficiency and Fuel Economy, Alternative Fuels, Hybridization of FCV, and Batteries for Hybrid Vehicles

2003-06-23
2003-01-2298
Currently, almost all the activities in the development of new generation of vehicles are focused on fuel cell powered vehicles (FCVs) and hybrid electric vehicles (HEVs). However, there are still uncertainties as to which provides the maximum benefits in terms of performance, energy savings and impact on the environment. This paper compares the performance and parameter characteristics of FCVs and HEVs with a view towards an objective assessment of the relative performance of these vehicles. In particular, this paper reviews major characteristics of FCVs as zero or ultra-low emission vehicles (ZEV/ULEVs), their presumed high efficiency and potential for using alternative fuels, while also considering their limited performance at high power demands.
Technical Paper

A Mild Hybrid Vehicle Drive Train with a Floating Stator Motor-Configuration, Control Strategy, Design and Simulation Verification

2002-06-03
2002-01-1878
Significant amount of energy is lost in frequent braking, automatic transmission and engine idling for a conventional engine powered passenger car while driving in cities. In this paper, a mild hybrid vehicle drive train has been introduced. It uses a small electric motor with floating stator, called TRANSMOTOR and small and a battery pack. The transmotor functions as a generator, engine starter, frictionless clutch (electric torque coupler), regenerative braking and propelling. The mild hybrid drive train can effectively reduce the urban-driving fuel consumption by regenerative braking, eliminate of energy losses in conventional automatic transmission and engine idling. The drive train can use low voltage system (42V for example), due to the low electric power rating, and is more similar to conventional drive train than full hybrid vehicle. Therefore, less effort is needed to evolve it from conventional vehicles.
Technical Paper

A Study of Design Issues on Electrically Peaking Hybrid Electric Vehicle for Diverse Urban Driving Patterns

1999-03-01
1999-01-1151
A vehicle's performance depends greatly on the operating conditions, such as journey type, driving behavior etc. Driving patterns vary with geographical location and traffic conditions. In today's global economy where automobile industries are concerned with both local and international markets, it becomes necessary to investigate vehicle performance for driving cycles of different countries and develop vehicle designs which are appropriate to the consumer's market. This paper concentrates on the issues related to designing hybrid electric vehicles. A method of optimizing the size of the principal hardware components of hybrid vehicles such as, electric motors, internal combustion engines, transmissions and energy storage devices based on the demands of different drive cycles is discussed in the paper.
Technical Paper

A Versatile Computer Simulation Tool for Design and Analysis of Electric and Hybrid Drive Trains

1997-02-24
970199
This paper discusses a new computer simulation tool, V-Elph, which extends the capabilities of previous modeling and simulation efforts by facilitating in-depth studies of any type of hybrid or all electric configuration or energy management strategy through visual programming and by creating components as hierarchical subsystems which can be used interchangeably as embedded systems. V-Elph is composed of detailed models of four major types of components: electric motors, internal combustion engines, batteries, and vehicle dynamics which can be integrated to simulate drive trains having all electric, series hybrid, and parallel hybrid configurations. V-Elph was written in the Matlab/Simulink graphical simulation language and is portable to most computer platforms. A simulation study of a sustainable, electrically-peaking hybrid-electric vehicle was performed to illustrate the applicability of V-Elph to hybrid and electric vehicle design.
Technical Paper

Effect of Extended-Speed, Constant-Power Operation of Electric Drives on the Design and Performance of EV-HEV Propulsion System

2000-04-02
2000-01-1557
Vehicle dynamics requires extended-speed, constant-power operation from the propulsion system in order to meet the vehicle's operating constraints (e.g., initial acceleration and gradeability) with minimum power. Decrease in power rating will decrease the volume of the energy storage system. However, extending the constant power operating range of the electric drives increases its rated torque, thereby, increasing motor volume and weight. This paper investigates the effect of extended constant power operation on battery driven electric vehicle (BEV) propulsion system taking the change in motor weight and battery volume into account. Five BEV systems with five traction drive having different base speeds are simulated for this study. The performances of the BEVs are obtained using FUDS and HWYFET drive cycles. Two EV-HEV software packages ‘V-ELPH’ developed by Texas A&M University and ‘ADVISOR’ from NREL are used for simulation testing.
Technical Paper

Investigation of High-Energy and High-Power Hybrid Energy Storage Systems for Military Vehicle Application

2003-06-23
2003-01-2287
Military and civilian vehicles are moving towards more electrification, in response to the increasing demand for multi-mode missions, fuel consumption and emissions reduction, and dual use electrical and electronic components. Consequently, the vehicle electric load is increasing rapidly. For military vehicles, these electrical loads include: the loads for electric traction (EV and HEV), cabin climate conditioning, vehicle control and actuation, actuation by wire (X by wire), sensors, reconnaissance, communications, weapons etc. All these requirements need to be supported by an efficient, fast responding and high capacity energy storage system. The electric load of a vehicle can be decomposed into two components--- static and dynamic loads. The static component is slowly varying power with limited magnitude, whereas the dynamic load is fast varying power with large magnitude. The energy storage system, accordingly, comprises of two basic elements.
X