Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3D-CFD Full Engine Simulation Application for Post-Oxidation Description

2021-09-05
2021-24-0016
The introduction of real driving emissions cycles and increasingly restrictive emissions regulations force the automotive industry to develop new and more efficient solutions for emission reductions. In particular, the cold start and catalyst heating conditions are crucial for modern cars because is when most of the emissions are produced. One interesting strategy to reduce the time required for catalyst heating is post-oxidation. It consists in operating the engine with a rich in-cylinder mixture and completing the oxidation of fuel inside the exhaust manifold. The result is an increase in temperature and enthalpy of the gases in the exhaust, therefore heating the three-way-catalyst. The following investigation focuses on the implementation of post-oxidation by means of scavenging in a four-cylinder, turbocharged, direct injection spark ignition engine. The investigation is based on detailed measurements that are carried out at the test-bench.
Technical Paper

A Downsized, Turbocharged Natural Gas SI Engine - Including Hybridization - For Minimized CO2 Emissions

2005-09-11
2005-24-026
To demonstrate the potential of a CO2-minimized propulsion concept a study of a natural-gas, micro-hybrid powertrain was carried out. The basis was built by experimental investigations of a turbocharged 1.0-l, 3-cylinder engine operated at stoichiometric and lean air/fuel ratio with EGR and an optimized combustion strategy. With the results of this study a still existing model for micro-hybrid vehicles was filled and the CO2 emissions for several concepts were calculated. It could be shown that CO2 improvements of 30 to 40% for the IC engine and up to 50% for the complete micro-hybrid propulsion system accompanied with better driveability are possible.
Journal Article

A New Approach for Modeling Cycle-to-Cycle Variations within the Framework of a Real Working-Process Simulation

2013-04-08
2013-01-1315
For a reliable and accurate simulation of SI engines reproduction of their operation limits (misfiring and knock limit) and in this context the knowledge of cyclic combustion variations and their influence on knock simulation are mandatory. For this purpose in this paper a real working-process simulation approach for the ability to predict cycle-to-cycle variations (ccv) of gasoline engines is proposed. An extensive measurement data base of four different test engines applying various operation strategies was provided in order to gain a better understanding of the physical background of the cyclic variations. So the ccv initiated by dilution strategies (internal EGR, lean operation), the ccv at full load and at the knock limit could be investigated in detail. Finally, the model was validated on the basis of three further engines which were not part of the actual development process.
Technical Paper

A Phenomenological Homogenization Model Considering Direct Fuel Injection and EGR for SI Engines

2020-04-14
2020-01-0576
As a consequence of reduced fuel consumption, direct injection gasoline engines have already prevailed against port fuel injection. However, in-cylinder fuel homogenization strongly depends on charge motion and injection strategies and can be challenging due to the reduced available time for mixture formation. An insufficient homogenization has generally a negative impact on the combustion and therefore also on efficiency and emissions. In order to reach the targets of the intensified CO2 emission reduction, further increase in efficiency of SI engines is essential. In this connection, 0D/1D simulation is a fundamental tool due to its application area in an early stage of development and its relatively low computational costs. Certainly, inhomogeneities are still not considered in quasi dimensional combustion models because the prediction of mixture formation is not included in the state of the art 0D/1D simulation.
Technical Paper

A Phenomenological Unburned Hydrocarbon Model for Diesel Engines

2020-09-15
2020-01-2006
Intensified emission regulations as well as consumption demands lead to an increasing significance of unburned hydrocarbon (UHC) emissions for diesel engines. On the one hand, the quantity of hydrocarbon (HC) raw emissions is important for emission predictions as well as for the exhaust after treatment. On the other hand, HC emissions are also important for predicting combustion efficiency and thus fuel consumption, since a part of unreleased chemical energy of the fuel is still bound in the HC molecules. Due to these reasons, a simulation model for predicting HC raw emissions was developed for diesel engines based on a phenomenological two-zone model. The HC model takes three main sources of HC emissions of diesel engines into account: Firstly, it contains a sub-model that describes the fuel dribble out of the injector after the end of injection. Secondly, HC emissions from cold peripheral zones near cylinder walls are determined in another sub-model.
Journal Article

A Quasi-Dimensional Burn Rate Model for Pre-Chamber-Initiated Jet Ignition Combustion

2023-04-11
2023-01-0184
Prospective combustion engine applications require the highest possible energy conversion efficiencies for environmental and economic sustainability. For conventional Spark-Ignition (SI) engines, the quasi-hemispherical flame propagation combustion method can only be significantly optimized in combination with high excess air dilution or increased combustion speed. However, with increasing excess air dilution, this is difficult due to decreasing flame speeds and flammability limits. Pre-Chamber (PC) initiated jet ignition combustion systems significantly shift the flammability and flame stability limits towards higher dilution areas due to high levels of introduced turbulence and a significantly increased flame area in early combustion stages, leading to considerably increased combustion speeds and high efficiencies. By now, vehicle implementations of PC-initiated combustion systems remain niche applications, especially in combination with lean mixtures.
Technical Paper

A Quasi-Dimensional SI Burn Rate Model for Predicting the Effects of Changing Fuel, Air-Fuel-Ratio, EGR and Water Injection

2020-04-14
2020-01-0574
As a result of the R&D focus being shifted from internal combustion engines to electrified powertrains, resources for the development of internal combustion engines are restricted more and more. With that, the importance of highly efficient engine development tools is increased. In this context, 0D/1D engine simulation offers the advantage of low computational effort and fast engine model set-up. To ensure a high predictive ability of the engine simulation, a reliable burn rate model is needed. Considering the increasing interest in alternative fuels, the aspect of predicting the fuel influence on combustion is of special importance. To reach these targets, the change of engine combustion characteristics with changing fuels and changing air-fuel-ratios were investigated systematically in a first step. For this purpose, engine test bed data were compared with expected fuel-dependent flame wrinkling trends based on Markstein/Lewis number theory.
Technical Paper

A Quasi-Dimensional Two-System Burn Rate Model for Pre-Chamber-Initiated SACI Combustion

2023-08-28
2023-24-0002
State-of-the-art spark-ignition engines mainly rely on the quasi-hemispherical flame propagation combustion method. Despite significant development efforts to obtain high energy conversion efficiencies while avoiding knock phenomena, achieved indicated efficiencies remain around 35 - 40 %. Further optimizations are enabled by significant excess air dilution or increased combustion speed. However, flammability limits and decreasing flame speeds with increasing air dilution prevent substantial improvements. Pre-Chamber (PC) initiated jet ignition combustion systems improve flame stability and shift flammability limits towards higher dilution levels due to increased turbulence and a larger flame area in the early Main-Chamber (MC) combustion stages. Simultaneously, the much-increased combustion speed reduces knock tendency, allowing the implementation of an innovative combustion method: PC-initiated jet ignition coupled with Spark-Assisted Compression Ignition (SACI).
Technical Paper

A Simulation Study of Optimal Integration of a Rankine Cycle Based Waste Heat Recovery System into the Cooling System of a Long-Haul Heavy Duty Truck

2018-09-10
2018-01-1779
As a promising solution to improve fuel efficiency of a long-haul heavy duty truck with diesel engine, organic Rankine cycle (ORC) based waste heat recovery system (WHR) by utilizing the exhaust gas from internal combustion engine has continuously drawn attention from automobile industry in recent years. The most attractive concept of ORC-based WHR system is the conversion of the thermal energy of exhaust gas recirculation (EGR) and exhaust gas from Tailpipe (EGT) to kinetic energy which is provided to the engine crankshaft. Due to a shift of the operating point of the engine by applying WHR system, the efficiency of the overall system increases and the fuel consumption reduces respectively. However, the integration of WHR system in truck is challenging by using engine cooling system as heat sink for Rankine cycle. The coolant mass flow rate influences strongly on the exhaust gas bypass which ensures a defined subcooling after condenser to avoid cavitation of pump.
Technical Paper

A Simulative Study for Post Oxidation During Scavenging on Turbo Charged SI Engines

2018-04-03
2018-01-0853
Fulfilling exhaust emissions regulations and meet customer performance needs mainly drive the current engine development. Turbocharging system plays a key role for that. Currently turbocharging should provide highest engine power density at high engine speed by also allowing a very responsive performance at low end. This represents a trade-off in turbocharger development. A large scaled turbine allows having moderate exhaust gas back pressure for peak power region, but leading to loss of torque in low engine speed. In the last years of engine development scavenging helped to get away a bit from this trade-off as it increases the turbine mass flow and also reduces cylinder internal residual gas at low engine speed. The mostly in-use lean strategy runs air fuel ratios of closed to stoichiometric mixture in cylinder and global (pre catalyst) of λ = 1.05 to l = 1.3. This will be out of the narrow air fuel ratio band of λ = 1 to ensure NOx conversion in the 3-way-catalyst.
Technical Paper

A Two-Stage Knock Model for the Development of Future SI Engine Concepts

2018-04-03
2018-01-0855
At specific operating conditions, the auto-ignition in the unburnt mixture that precedes the occurrence of knock in conventional SI engines happens in two stages. In a previous publication, the authors demonstrated that the low-temperature heat release significantly influences the auto-ignition behavior of the mixture, thus severely impairing the prediction capabilities of the Livengood-Wu integral that the majority of the commonly used 0D/1D knock models are based on. Consequently, a new two-stage auto-ignition prediction approach for modeling the progress of the chemical reactions was introduced. It was demonstrated that the proposed auto-ignition model predicts the occurrence of two-stage ignition and accurately considers the significant influence of low-temperature heat release on the mixture’s auto-ignition behavior at various operating conditions.
Technical Paper

A Way towards Remarkable Reduction of Co2-Emissions in Motorsports: The CNG-Engine

2011-06-09
2011-37-0006
Until a few years ago the discussion of reduction of CO₂ emissions was completely out of place in motorsports. Nowadays, also in this field, car manufacturers want to investigate different approaches towards a more responsible and sustainable concept. For this target an interesting and feasible solution is the use of methane as an alternative fuel. At the 2009 edition of the 24-hour endurance race of the Nürburgring the Volkswagen Motorsport GmbH, in addition to vehicles powered by gasoline engines, introduced two vehicles powered by turbocharged CNG engines. The aim was to prove that also an "environment-friendly" concept is able to provide the required efficiency, dynamic and reliability for a successful participation in motorsports. After the success in the 2009 edition the engagement has been continued in 2010; this time exclusively with CNG vehicles.
Technical Paper

An Investigation of Sub-Synchronous Oscillations in Exhaust Gas Turbochargers

2015-09-06
2015-24-2531
Due to the demands for today's passenger cars regarding fuel consumption and emissions, exhaust turbo charging has become a fundamental step in achieving these goals. Especially in upper and middle class vehicles it is also necessary to consider the noise comfort. Today, floating bushings are mainly used as radial bearings in turbochargers. In the conventional operating range of the turbocharger dynamic instability occurs in the lubrication films of the bearings. This instability is transferred by structure-borne noise into audible airborne sound and known as constant tone phenomenon. This phenomenon is not the major contributor of the engine noise but its tonal character is very unpleasant. In order to gain a more detailed understanding about the origin of this phenomenon, displacement sensors have been applied to the compressor- and the turbine-side of the rotor, to be able to determine the displacement path.
Technical Paper

An Operating Strategy Approach for Serial/Parallel Hybrid Electric Vehicles

2022-06-14
2022-37-0016
In this paper, a serial/parallel hybrid electric vehicle with a 17 kWh battery and 400 V voltage level is simulated. The vehicle is a C-segment vehicle, which has optimized driving resistances. It also has an external recharge possibility, which enables fully electric driving. The vehicle uses an Otto-engine concept as well as two electric motors. One motor is a permanent magnet synchronous motor and can be used as traction motor or generator, the other one is an induction motor used as main traction motor for the vehicle. The vehicle uses a 2-speed gearbox, where the electric motors are mounted in P2-configuration. To reach optimal results for the fuel consumption, an operating strategy based on the Equivalent Consumption Minimization Strategy (ECMS) is introduced and implemented in the vehicle simulation.
Technical Paper

Analysis of Water Injection Strategies to Exploit the Thermodynamic Effects of Water in Gasoline Engines by Means of a 3D-CFD Virtual Test Bench

2019-09-09
2019-24-0102
CO2 emission constraints taking effect from 2020 lead to further investigations of technologies to lower knock sensitivity of gasoline engines, main limiting factor to increase engine efficiency and thus reduce fuel consumption. Moreover the RDE cycle demands for higher power operation, where fuel enrichment is needed for component protection. To achieve high efficiency, the engine should be run at stoichiometric conditions in order to have better emission control and reduce fuel consumption. Among others, water injection is a promising technology to improve engine combustion efficiency, by mainly reducing knock sensitivity and to keep high conversion rates of the TWC over the whole engine map. The comprehension of multiple thermodynamic effects of water injection through 3D-CFD simulations and their exploitation to enhance the engine combustion efficiency is the main purpose of the analysis.
Technical Paper

Analysis of the Applicability of Water Injection in Combination with an eFuel for Knock Mitigation and Improved Engine Efficiency

2022-06-14
2022-37-0019
The development of future gasoline engines is dominated by the study of new technologies aimed at reducing the engine negative environmental impact and increase its thermal efficiency. One common trend is to develop smaller engines able to operate in stoichiometric conditions across the whole engine map for better efficiency, lower fuel consumption, and optimal conversion rate of the three-way catalyst (TWC). Water injection is one promising technique, as it significantly reduces the engine knock tendency and avoids fuel enrichment for exhaust temperature mitigation at high power operation. With the focus on reducing the carbon footprint of the automotive sector, another vital topic of research is the investigation of new alternative CO2-neutral fuels or so-called eFuels. Several studies have already shown how these new synthetic fuels can be produced by exploiting renewable energy sources and can significantly reduce engine emissions.
Technical Paper

Data-Driven Modeling: An AI Toolchain for the Powertrain Development Process

2022-03-29
2022-01-0158
Predictive physical modeling is an established method used in the development process for automotive components and systems. While accurate predictions can be issued after tuning model parameters, long computation times are expected depending on the complexity of the model. As requirements for components and systems continuously increase, new optimization approaches are constantly being applied to solve multidimensional objectives and resulting conflicts optimally. Some of those approaches are deemed not feasible, as the computational times for required single predictions using conventional simulation models are too high. To address this issue it is proposed to use data-driven model such as neural networks. Previous efforts have failed due to sparse data sets and resulting poor predictive ability. This paper introduces an AI Toolchain used for data-driven modeling of combustion engine components. Two methods for generating scalable and fully variable datasets will be shown.
Technical Paper

Development and Experimental Investigation of a Two-Stroke Opposed-Piston Free-Piston Engine

2016-11-08
2016-32-0046
The proposed paper deals with the development process and initial measurement results of an opposed-piston combustion engine for application in a Free-Piston Linear Generator (FPLG). The FPLG, which is being developed at the German Aerospace Center (DLR), is an innovative internal combustion engine for a fuel based electrical power supply. With its arrangement, the pistons freely oscillate between the compression chamber of the combustion unit and a gas spring with no mechanical coupling like a crank shaft. Linear alternators convert the kinetic energy of the moving pistons into electric energy. The virtual development of the novel combustion system is divided into two stages: On the one hand, the combustion system including e.g. a cylinder liner, pistons, cooling and lubrication concepts has to be developed.
Technical Paper

Development of a Measurement Technology in Order to Determine the Dynamic Behavior of a Two-Stage Variable Connecting Rod

2018-04-15
2018-01-5002
Variation of the geometric compression ratio in gasoline combustion engines during engine operation enables potential for decreasing fuel consumption as well as emissions. One way to achieve a variable geometric compression ratio (VCR) is the application of a connecting rod with a variable effective length between its large end and its small end. Such a system consists of a connecting rod body with an eccentrically supported piston pin and a linkage which is supported hydraulically. Therefore, the connecting rod evolves from a solid part to a complex assembly of mechanical and hydraulic parts. In order to deploy this system in the most efficient way, an understanding of the physics and the dynamic behavior of the VCR connecting rod is necessary. This includes the mechanical subsystem as well as the hydraulic subsystem. This paper describes the experimental examination of a two stage variable connecting rod.
Technical Paper

Dynamic Simulation of Hybrid Powertrains using Different Combustion Engine Models

2015-09-06
2015-24-2545
This study presents a comparison of different approaches for the simulation of HEV fuel consumption. For this purpose a detailed 1D-CFD model within an HEV drivetrain is compared to a ‘traditional’ map-based combustion engine model as well as different types of simplified engine models which are able to reduce computing time significantly while keeping the model accuracy at a high level. First, a simplified air path model (fast running model) is coupled with a quasi dimensional, predictive combustion model. In a further step of reducing the computation time, an alternative way of modeling the in cylinder processes was evaluated, by replacing the combustion model with a mean value model. For this approach, the most important influencing factors of the 1D-CFD air path model (temperature, pressure, A/F-ratio) are used as input values into neural nets, while the corresponding outputs are in turn used as feedback for the air path model.
X