Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Design & Development of Metal Matrix Based Mounting Bracket for Commercial Vehicle Application

2020-09-25
2020-28-0463
Automakers are being subjected to increasingly strict fuel economy requirements which led OEMs to focus more on Light weighting and Energy efficiency areas. Considering the aforesaid challenges, efforts have been taken in Light weighting of mounting bracket for Engine application. This paper deals with conversion of Engine accessory bracket from Aluminum material to Metal Matrix composite (MMC). In Design phase, existing bracket has been studied for its structural requirements and further Bracket is designed to meet MMC process requirement and CAE carried out for topology optimization and Structural integrity. Finally observations and results were compared for Existing design and Proposed design and further optimization proposed.
Technical Paper

Development and Optimization of PCM Based Technology for Cooling Applications for Improvement of Fuel Efficiency in Commercial Vehicle

2017-03-28
2017-01-0150
In the current landscape of commercial vehicle industry, fuel economy is one of the major parameter for fleet owner’s profitability as well as greenhouse gasses emission. Less fuel efficiency results in more fuel consumption; use of conventional fuel in engines also makes environment polluted. The rapid growth in fuel prices has led to the demand for technologies that can improve the fuel efficiency of the vehicle. Phase change material (PCMs) for Thermal energy storage system (TES) is one of the specific technologies that not only can conserve energy to a large extent but also can reduce emission as well as the dependency on convention fuel. There is a great variety of PCMs that can be used for the extensive range of temperatures, making them attractive in a number of applications in automobiles.
Technical Paper

Development and Optimization of Variable Flow AC Compressor for Commercial Vehicles to Reduce Parasitic Losses and Improving Efficiency of HVAC System

2018-04-03
2018-01-0056
In the modern era of commercial vehicle industry, passenger and driver comfort is one of the major parameters that improves vehicle running time which leads to fleet owner’s profitability. Air conditioning system is one such system whose primary function is to provide the required cooling inside the cabin in hot weather conditions. An Air-conditioned truck cabin creates a comfortable environment for the driver which increases his efficiency and reduces fatigue. An AC compressor consumes power directly from the engine affecting fuel economy and vehicle performance. With ever increasing demand for energy efficient systems and thermal comfort in automobiles, AC systems should be able to deliver the required cooling performance with minimum power consumption. Therefore, reducing AC power consumption in vehicles is one of the key challenges faced by climate control engineers.
Technical Paper

Development, Performance Analysis and Optimization of Parallel Hydraulic Hybrid System for City Bus Application

2018-04-03
2018-01-0419
One of the key requisites for a sustained mobility development is to have an efficient public transport system. Fuel efficiency and emission control are extremely important in this respect. By the very nature of city driving, it is obvious that city traffic results in frequent vehicle start and stops; which involves huge waste of vehicle kinetic energy. Every time vehicle moving from idle, needs a bigger input of power and every time the brakes are applied, all energy built up disappears again, wasted in the brake pads as heat. An effort has been taken to recuperate vehicle kinetic energy, hydraulically during braking events and utilize it to assist the vehicle during acceleration. Hydraulic based hybrid vehicle working on the principle of regenerative braking is one of the most fuel-efficient technologies for city application. Parallel hydraulic hybrid vehicle has been developed and optimized for fuel efficiency gain at vehicle level.
Technical Paper

Optimization of Compression Ratio for DI Diesel Engines for Better Fuel Economy

2019-11-21
2019-28-2431
Fuel economy is becoming one of the key parameter as it does not only account for the profitability of commercial vehicle owner but also has impact on environment. Fuel economy gets affected from several parameters of engine such as Peak firing pressure, reduction in parasitic losses, volumetric efficiency and thermal efficiency. Compression ratio is one of key design criteria which affects most of the above mentioned parameters, which not only improve fuel efficiency but also results in improvement of emission levels. This paper evaluates the optimization of Compression ratio and study its effect on Engine performance. The parameters investigated in this paper include combustion bowl volume in Piston and Cylinder head gasket thickness as these are major contributing factors affecting clearance volume and in turn the compression ratio of engine. Based on the calculation results, an optimum Compression Ratio for the engine is selected.
Technical Paper

Performance Analysis & Optimization of Engine Cooling System by Using Electronically Controlled Thermostat for Improving Thermal Efficiency

2018-04-03
2018-01-0053
The engine coolant temperature influences fuel consumption, power, emissions and mechanical load on the components. The optimization of these variables does not permit a fixed temperature value if there are different speed and load states. The optimization requires a temperature range that corresponds to each operating point. A conventional wax thermostat has a wide temperature control range. The start to open and full open temperature values depend on the mechanical properties of the spring and wax material. Hence, there is no control on the coolant temperature band in real time. This paper deals with the performance analysis & optimization of engine cooling system by using electronically controlled coolant thermostat for improving engine thermal efficiency. To integrate this technology with an existing engine, some design modifications have been made in the thermostat housing mounted on the engine cylinder head and radiator inlet hosepipe.
Technical Paper

Replacing Twin Electric Fan Radiator with Single Fan Radiator

2019-11-21
2019-28-2381
Downsizing is one of the crucial activities being performed by every automotive engineering organization. The main aim is to reduce - Weight, CO2 emissions and achieve cost benefit. All this is done without any compromise on performance requirement or rather with optimization of system performance. This paper evaluate one such optimization, where-in radiator assembly with two electric fan is targeted for downsizing for small commercial vehicle application. The present two fan radiator is redesigned with thinner core and use of single fan motor assembly. The performance of the heat exchanger is tested for similar conditions back to back on vehicle and optimized to get the balanced benefit in terms of weight, cooling performance and importantly cost. This all is done without any modification in vehicle interface components except electrical connector for fan. The side members and brackets design is also simplified to achieve maximum weight reduction.
X